961 resultados para Enterprise network agreement (ENA)
Resumo:
Large fine mode-dominated aerosols (submicron radius) in size distributions retrieved from the Aerosol Robotic Network (AERONET) have been observed after fog or low-altitude cloud dissipation events. These column-integrated size distributions have been obtained at several sites in many regions of the world, typically after evaporation of low-altitude cloud such as stratocumulus or fog. Retrievals with cloud-processed aerosol are sometimes bimodal in the accumulation mode with the larger-size mode often similar to 0.4-0.5 mu m radius (volume distribution); the smaller mode, typically similar to 0.12 to similar to 0.20 mu m, may be interstitial aerosol that were not modified by incorporation in droplets and/or aerosol that are less hygroscopic in nature. Bimodal accumulation mode size distributions have often been observed from in situ measurements of aerosols that have interacted with clouds, and AERONET size distribution retrievals made after dissipation of cloud or fog are in good agreement with particle sizes measured by in situ techniques for cloud-processed aerosols. Aerosols of this type and large size range (in lower concentrations) may also be formed by cloud processing in partly cloudy conditions and may contribute to the "shoulder" of larger-size particles in the accumulation mode retrievals, especially in regions where sulfate and other soluble aerosol are a significant component of the total aerosol composition. Observed trends of increasing aerosol optical depth (AOD) as fine mode radius increased suggests higher AOD in the near-cloud environment and higher overall AOD than typically obtained from remote sensing owing to bias toward sampling at low cloud fraction.
Resumo:
Glasses in the system xGeO(2)-(1-x)NaPO3 (0 <= x <= 0.50) were prepared by conventional melting quenching and characterized by thermal analysis, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and P-31 nuclear magnetic resonance (MAS NMR) techniques. The deconvolution of the latter spectra was aided by homonuclear J-resolved and refocused INADEQUATE techniques. The combined analyses of P-31 MAS NMR and O-1s XPS lineshapes, taking charge and mass balance considerations into account, yield the detailed quantitative speciations of the phosphorus, germanium, and oxygen atoms and their respective connectivities. An internally consistent description is possible without invoking the formation of higher-coordinated germanium species in these glasses, in agreement with experimental evidence in the literature. The structure can be regarded, to a first approximation, as a network consisting of P-(2) and P-(3) tetrahedra linked via four-coordinate germanium. As implied by the appearance of P-(3) units, there is a moderate extent of network modifier sharing between phosphate and germanate network formers, as expressed by the formal melt reaction P-(2) + Ge-(4) -> P-(3) + Ge-(3). The equilibrium constant of this reaction is estimated as K = 0.52 +/- 0.11, indicating a preferential attraction of network modifier by the phosphorus component. These conclusions are qualitatively supported by Raman spectroscopy as well as P-31{Na-23} and P-31{Na-23} rotational echo double resonance (REDOR) NMR results. The combined interpretation of O-1s XPS and P-31 MAS NMR spectra shows further that there are clear deviations from a random connectivity scenario: heteroatomic P-O-Ge linkages are favored over homoatomic P-O-P and Ge-O-Ge linkages.
Resumo:
Il lavoro di ricerca prende le mosse da una premessa di ordine economico. Il fenomeno delle reti di impresa, infatti, nasce dalla realtà economica dei mercati. In tale contesto non può prescindere dal delineare un quadro della situazione- anche di crisi- congiunturale che ha visto coinvolte specialmente le imprese italiane. In tale prospettiva, si è reso necessario indagare il fenomeno della globalizzazione, con riferimento alle sue origini,caratteristiche e conseguenze. Ci si sofferma poi sulla ricostruzione dogmatica del fenomeno. Si parte dalla ricostruzione dello stesso in termini di contratto plurilaterale- sia esso con comunione di scopo oppure plurilaterale di scambio- per criticare tale impostazione, non del tutto soddisfacente, in quanto ritenuto remissiva di fronte alla attuale vis espansiva del contratto plurilaterale. Più convincente appare lo schema del collegamento contrattuale, che ha il pregio di preservare l’autonomia e l’indipendenza degli imprenditori aderenti, pur inseriti nel contesto di un’operazione economica unitaria, volta a perseguire uno scopo comune, l’“interesse di rete”, considerato meritevole di tutela secondo l’ordinamento giuridico ex art. 1322 2.co. c.c. In effetti il contratto ben si presta a disegnare modelli di rete sia con distribuzione simmetrica del potere decisionale, sia con distribuzione asimmetrica, vale a dire con un elevato livello di gerarchia interna. Non può d’altra parte non ravvisarsi un’affinità con le ipotesi di collegamento contrattuale in fase di produzione, consistente nel delegare ad un terzo parte della produzione, e nella fase distributiva, per cui la distribuzione avviene attraverso reti di contratti. Si affronta la materia della responsabilità della rete, impostando il problema sotto due profili: la responsabilità interna ed esterna. La prima viene risolta sulla base dell’affidamento reciproco maturato da ogni imprenditore. La seconda viene distinta in responsabilità extracontrattuale, ricondotta nella fattispecie all’art. 2050 c.c., e contrattuale.
Resumo:
Summary PhD Thesis Jan Pollmann: This thesis focuses on global scale measurements of light reactive non-methane hydrocarbon (NMHC), in the volatility range from ethane to toluene with a special focus on ethane, propane, isobutane, butane, isopentane and pentane. Even though they only occur at the ppt level (nmol mol-1) in the remote troposphere these species can yield insight into key atmospheric processes. An analytical method was developed and subsequently evaluated to analyze NMHC from the NOAA – ERSL cooperative air sampling network. Potential analytical interferences through other atmospheric trace gases (water vapor and ozone) were carefully examined. The analytical parameters accuracy and precision were analyzed in detail. It was proven that more than 90% of the data points meet the Global Atmospheric Watch (GAW) data quality objective. Trace gas measurements from 28 measurement stations were used to derive the global atmospheric distribution profile for 4 NMHC (ethane, propane, isobutane, butane). A close comparison of the derived ethane data with previously published reports showed that northern hemispheric ethane background mixing ratio declined by approximately 30% since 1990. No such change was observed for southern hemispheric ethane. The NMHC data and trace gas data supplied by NOAA ESRL were used to estimate local diurnal averaged hydroxyl radical (OH) mixing ratios by variability analysis. Comparison of the variability derived OH with directly measured OH and modeled OH mixing ratios were found in good agreement outside the tropics. Tropical OH was on average two times higher than predicted by the model. Variability analysis was used to assess the effect of chlorine radicals on atmospheric oxidation chemistry. It was found that Cl is probably not of significant relevance on a global scale.
Resumo:
Nata dal progetto di migrazione, in un ambiente consolidato, di una infrastruttura Wireless distribuita su territorio all'interno di una MAN (Metropolitan Area Network), si cerca di illustrare quali sono i passi fondamentali da seguire e con cosa ci si deve misurare per progettare una soluzione funzionale ed elaborare una strategia avendo a che fare con architetture complesse, dove la messa in esercizio di un servizio offerto ad un numero elevato di utenti prevede uno studio ben preciso delle attività da svolgere. Un'attenta analisi, ci consentirà di seguire e riadattare le scelte implementative in funzione delle esigenze infrastrutturali, illustrandone le difficoltà, gli imprevisti e le modifiche intraprese passo passo. Gli argomenti trattati tendono a far comprendere con quali problematiche si ha a che fare nella fase implementativa passando dalla fase di analisi a quella decisionale, quella di migrazione architetturale e di installazione, oltre che alla scelta delle componenti e delle tecnologie specifiche che, prima di essere portate a regime, devono essere sottoposte agli opportuni test per la comprensione/risoluzione di problematiche complesse; come le operazioni necessarie per operare con una efficace metodologia.
Resumo:
This paper presents our ongoing work on enterprise IT integration of sensor networks based on the idea of service descriptions and applying linked data principles to them. We argue that using linked service descriptions facilitates a better integration of sensor nodes into enterprise IT systems and allows SOA principles to be used within the enterprise IT and within the sensor network itself.
Resumo:
Recent advancements in cloud computing have enabled the proliferation of distributed applications, which require management and control of multiple services. However, without an efficient mechanism for scaling services in response to changing environmental conditions and number of users, application performance might suffer, leading to Service Level Agreement (SLA) violations and inefficient use of hardware resources. We introduce a system for controlling the complexity of scaling applications composed of multiple services using mechanisms based on fulfillment of SLAs. We present how service monitoring information can be used in conjunction with service level objectives, predictions, and correlations between performance indicators for optimizing the allocation of services belonging to distributed applications. We validate our models using experiments and simulations involving a distributed enterprise information system. We show how discovering correlations between application performance indicators can be used as a basis for creating refined service level objectives, which can then be used for scaling the application and improving the overall application's performance under similar conditions.
Resumo:
Currently, dramatic changes are happening in the IS development industry. The incumbent system developers (hubs) are embracing partnerships with less well established companies (spokes), acting in specific niches. This paper seeks to establish a better understanding of the motives for this strategy. Relying on existing work on strategic alliance formation, it is argued that partnering is particularly attractive, if these small companies possess certain capabilities that are difficult to obtain through other arrangements than partnering. Again drawing on the literature, three categories of capabilities are identified: the capability to innovate within their niche, the capability to provide a specific functionality that can be integrated with the incumbents’ systems, and the capability to address novel markets. These factors are analyzed through a case study. The case represents a market leader in the global IS development industry, which fosters a network of smaller partner firms. The study reveals that temporal dynamics between the identified factors are playing a dominant role in these networks. A cyclical partnership model is developed that attempts to explain the life cycle of a partnership within such a network.
Resumo:
Cloud Computing is an enabler for delivering large-scale, distributed enterprise applications with strict requirements in terms of performance. It is often the case that such applications have complex scaling and Service Level Agreement (SLA) management requirements. In this paper we present a simulation approach for validating and comparing SLA-aware scaling policies using the CloudSim simulator, using data from an actual Distributed Enterprise Information System (dEIS). We extend CloudSim with concurrent and multi-tenant task simulation capabilities. We then show how different scaling policies can be used for simulating multiple dEIS applications. We present multiple experiments depicting the impact of VM scaling on both datacenter energy consumption and dEIS performance indicators.
Resumo:
Our research project develops an intranet search engine with concept- browsing functionality, where the user is able to navigate the conceptual level in an interactive, automatically generated knowledge map. This knowledge map visualizes tacit, implicit knowledge, extracted from the intranet, as a network of semantic concepts. Inductive and deductive methods are combined; a text ana- lytics engine extracts knowledge structures from data inductively, and the en- terprise ontology provides a backbone structure to the process deductively. In addition to performing conventional keyword search, the user can browse the semantic network of concepts and associations to find documents and data rec- ords. Also, the user can expand and edit the knowledge network directly. As a vision, we propose a knowledge-management system that provides concept- browsing, based on a knowledge warehouse layer on top of a heterogeneous knowledge base with various systems interfaces. Such a concept browser will empower knowledge workers to interact with knowledge structures.
Resumo:
Cloud Computing enables provisioning and distribution of highly scalable services in a reliable, on-demand and sustainable manner. However, objectives of managing enterprise distributed applications in cloud environments under Service Level Agreement (SLA) constraints lead to challenges for maintaining optimal resource control. Furthermore, conflicting objectives in management of cloud infrastructure and distributed applications might lead to violations of SLAs and inefficient use of hardware and software resources. This dissertation focusses on how SLAs can be used as an input to the cloud management system, increasing the efficiency of allocating resources, as well as that of infrastructure scaling. First, we present an extended SLA semantic model for modelling complex service-dependencies in distributed applications, and for enabling automated cloud infrastructure management operations. Second, we describe a multi-objective VM allocation algorithm for optimised resource allocation in infrastructure clouds. Third, we describe a method of discovering relations between the performance indicators of services belonging to distributed applications and then using these relations for building scaling rules that a CMS can use for automated management of VMs. Fourth, we introduce two novel VM-scaling algorithms, which optimally scale systems composed of VMs, based on given SLA performance constraints. All presented research works were implemented and tested using enterprise distributed applications.
Resumo:
Neuronal morphology is a key feature in the study of brain circuits, as it is highly related to information processing and functional identification. Neuronal morphology affects the process of integration of inputs from other neurons and determines the neurons which receive the output of the neurons. Different parts of the neurons can operate semi-independently according to the spatial location of the synaptic connections. As a result, there is considerable interest in the analysis of the microanatomy of nervous cells since it constitutes an excellent tool for better understanding cortical function. However, the morphologies, molecular features and electrophysiological properties of neuronal cells are extremely variable. Except for some special cases, this variability makes it hard to find a set of features that unambiguously define a neuronal type. In addition, there are distinct types of neurons in particular regions of the brain. This morphological variability makes the analysis and modeling of neuronal morphology a challenge. Uncertainty is a key feature in many complex real-world problems. Probability theory provides a framework for modeling and reasoning with uncertainty. Probabilistic graphical models combine statistical theory and graph theory to provide a tool for managing domains with uncertainty. In particular, we focus on Bayesian networks, the most commonly used probabilistic graphical model. In this dissertation, we design new methods for learning Bayesian networks and apply them to the problem of modeling and analyzing morphological data from neurons. The morphology of a neuron can be quantified using a number of measurements, e.g., the length of the dendrites and the axon, the number of bifurcations, the direction of the dendrites and the axon, etc. These measurements can be modeled as discrete or continuous data. The continuous data can be linear (e.g., the length or the width of a dendrite) or directional (e.g., the direction of the axon). These data may follow complex probability distributions and may not fit any known parametric distribution. Modeling this kind of problems using hybrid Bayesian networks with discrete, linear and directional variables poses a number of challenges regarding learning from data, inference, etc. In this dissertation, we propose a method for modeling and simulating basal dendritic trees from pyramidal neurons using Bayesian networks to capture the interactions between the variables in the problem domain. A complete set of variables is measured from the dendrites, and a learning algorithm is applied to find the structure and estimate the parameters of the probability distributions included in the Bayesian networks. Then, a simulation algorithm is used to build the virtual dendrites by sampling values from the Bayesian networks, and a thorough evaluation is performed to show the model’s ability to generate realistic dendrites. In this first approach, the variables are discretized so that discrete Bayesian networks can be learned and simulated. Then, we address the problem of learning hybrid Bayesian networks with different kinds of variables. Mixtures of polynomials have been proposed as a way of representing probability densities in hybrid Bayesian networks. We present a method for learning mixtures of polynomials approximations of one-dimensional, multidimensional and conditional probability densities from data. The method is based on basis spline interpolation, where a density is approximated as a linear combination of basis splines. The proposed algorithms are evaluated using artificial datasets. We also use the proposed methods as a non-parametric density estimation technique in Bayesian network classifiers. Next, we address the problem of including directional data in Bayesian networks. These data have some special properties that rule out the use of classical statistics. Therefore, different distributions and statistics, such as the univariate von Mises and the multivariate von Mises–Fisher distributions, should be used to deal with this kind of information. In particular, we extend the naive Bayes classifier to the case where the conditional probability distributions of the predictive variables given the class follow either of these distributions. We consider the simple scenario, where only directional predictive variables are used, and the hybrid case, where discrete, Gaussian and directional distributions are mixed. The classifier decision functions and their decision surfaces are studied at length. Artificial examples are used to illustrate the behavior of the classifiers. The proposed classifiers are empirically evaluated over real datasets. We also study the problem of interneuron classification. An extensive group of experts is asked to classify a set of neurons according to their most prominent anatomical features. A web application is developed to retrieve the experts’ classifications. We compute agreement measures to analyze the consensus between the experts when classifying the neurons. Using Bayesian networks and clustering algorithms on the resulting data, we investigate the suitability of the anatomical terms and neuron types commonly used in the literature. Additionally, we apply supervised learning approaches to automatically classify interneurons using the values of their morphological measurements. Then, a methodology for building a model which captures the opinions of all the experts is presented. First, one Bayesian network is learned for each expert, and we propose an algorithm for clustering Bayesian networks corresponding to experts with similar behaviors. Then, a Bayesian network which represents the opinions of each group of experts is induced. Finally, a consensus Bayesian multinet which models the opinions of the whole group of experts is built. A thorough analysis of the consensus model identifies different behaviors between the experts when classifying the interneurons in the experiment. A set of characterizing morphological traits for the neuronal types can be defined by performing inference in the Bayesian multinet. These findings are used to validate the model and to gain some insights into neuron morphology. Finally, we study a classification problem where the true class label of the training instances is not known. Instead, a set of class labels is available for each instance. This is inspired by the neuron classification problem, where a group of experts is asked to individually provide a class label for each instance. We propose a novel approach for learning Bayesian networks using count vectors which represent the number of experts who selected each class label for each instance. These Bayesian networks are evaluated using artificial datasets from supervised learning problems. Resumen La morfología neuronal es una característica clave en el estudio de los circuitos cerebrales, ya que está altamente relacionada con el procesado de información y con los roles funcionales. La morfología neuronal afecta al proceso de integración de las señales de entrada y determina las neuronas que reciben las salidas de otras neuronas. Las diferentes partes de la neurona pueden operar de forma semi-independiente de acuerdo a la localización espacial de las conexiones sinápticas. Por tanto, existe un interés considerable en el análisis de la microanatomía de las células nerviosas, ya que constituye una excelente herramienta para comprender mejor el funcionamiento de la corteza cerebral. Sin embargo, las propiedades morfológicas, moleculares y electrofisiológicas de las células neuronales son extremadamente variables. Excepto en algunos casos especiales, esta variabilidad morfológica dificulta la definición de un conjunto de características que distingan claramente un tipo neuronal. Además, existen diferentes tipos de neuronas en regiones particulares del cerebro. La variabilidad neuronal hace que el análisis y el modelado de la morfología neuronal sean un importante reto científico. La incertidumbre es una propiedad clave en muchos problemas reales. La teoría de la probabilidad proporciona un marco para modelar y razonar bajo incertidumbre. Los modelos gráficos probabilísticos combinan la teoría estadística y la teoría de grafos con el objetivo de proporcionar una herramienta con la que trabajar bajo incertidumbre. En particular, nos centraremos en las redes bayesianas, el modelo más utilizado dentro de los modelos gráficos probabilísticos. En esta tesis hemos diseñado nuevos métodos para aprender redes bayesianas, inspirados por y aplicados al problema del modelado y análisis de datos morfológicos de neuronas. La morfología de una neurona puede ser cuantificada usando una serie de medidas, por ejemplo, la longitud de las dendritas y el axón, el número de bifurcaciones, la dirección de las dendritas y el axón, etc. Estas medidas pueden ser modeladas como datos continuos o discretos. A su vez, los datos continuos pueden ser lineales (por ejemplo, la longitud o la anchura de una dendrita) o direccionales (por ejemplo, la dirección del axón). Estos datos pueden llegar a seguir distribuciones de probabilidad muy complejas y pueden no ajustarse a ninguna distribución paramétrica conocida. El modelado de este tipo de problemas con redes bayesianas híbridas incluyendo variables discretas, lineales y direccionales presenta una serie de retos en relación al aprendizaje a partir de datos, la inferencia, etc. En esta tesis se propone un método para modelar y simular árboles dendríticos basales de neuronas piramidales usando redes bayesianas para capturar las interacciones entre las variables del problema. Para ello, se mide un amplio conjunto de variables de las dendritas y se aplica un algoritmo de aprendizaje con el que se aprende la estructura y se estiman los parámetros de las distribuciones de probabilidad que constituyen las redes bayesianas. Después, se usa un algoritmo de simulación para construir dendritas virtuales mediante el muestreo de valores de las redes bayesianas. Finalmente, se lleva a cabo una profunda evaluaci ón para verificar la capacidad del modelo a la hora de generar dendritas realistas. En esta primera aproximación, las variables fueron discretizadas para poder aprender y muestrear las redes bayesianas. A continuación, se aborda el problema del aprendizaje de redes bayesianas con diferentes tipos de variables. Las mixturas de polinomios constituyen un método para representar densidades de probabilidad en redes bayesianas híbridas. Presentamos un método para aprender aproximaciones de densidades unidimensionales, multidimensionales y condicionales a partir de datos utilizando mixturas de polinomios. El método se basa en interpolación con splines, que aproxima una densidad como una combinación lineal de splines. Los algoritmos propuestos se evalúan utilizando bases de datos artificiales. Además, las mixturas de polinomios son utilizadas como un método no paramétrico de estimación de densidades para clasificadores basados en redes bayesianas. Después, se estudia el problema de incluir información direccional en redes bayesianas. Este tipo de datos presenta una serie de características especiales que impiden el uso de las técnicas estadísticas clásicas. Por ello, para manejar este tipo de información se deben usar estadísticos y distribuciones de probabilidad específicos, como la distribución univariante von Mises y la distribución multivariante von Mises–Fisher. En concreto, en esta tesis extendemos el clasificador naive Bayes al caso en el que las distribuciones de probabilidad condicionada de las variables predictoras dada la clase siguen alguna de estas distribuciones. Se estudia el caso base, en el que sólo se utilizan variables direccionales, y el caso híbrido, en el que variables discretas, lineales y direccionales aparecen mezcladas. También se estudian los clasificadores desde un punto de vista teórico, derivando sus funciones de decisión y las superficies de decisión asociadas. El comportamiento de los clasificadores se ilustra utilizando bases de datos artificiales. Además, los clasificadores son evaluados empíricamente utilizando bases de datos reales. También se estudia el problema de la clasificación de interneuronas. Desarrollamos una aplicación web que permite a un grupo de expertos clasificar un conjunto de neuronas de acuerdo a sus características morfológicas más destacadas. Se utilizan medidas de concordancia para analizar el consenso entre los expertos a la hora de clasificar las neuronas. Se investiga la idoneidad de los términos anatómicos y de los tipos neuronales utilizados frecuentemente en la literatura a través del análisis de redes bayesianas y la aplicación de algoritmos de clustering. Además, se aplican técnicas de aprendizaje supervisado con el objetivo de clasificar de forma automática las interneuronas a partir de sus valores morfológicos. A continuación, se presenta una metodología para construir un modelo que captura las opiniones de todos los expertos. Primero, se genera una red bayesiana para cada experto y se propone un algoritmo para agrupar las redes bayesianas que se corresponden con expertos con comportamientos similares. Después, se induce una red bayesiana que modela la opinión de cada grupo de expertos. Por último, se construye una multired bayesiana que modela las opiniones del conjunto completo de expertos. El análisis del modelo consensuado permite identificar diferentes comportamientos entre los expertos a la hora de clasificar las neuronas. Además, permite extraer un conjunto de características morfológicas relevantes para cada uno de los tipos neuronales mediante inferencia con la multired bayesiana. Estos descubrimientos se utilizan para validar el modelo y constituyen información relevante acerca de la morfología neuronal. Por último, se estudia un problema de clasificación en el que la etiqueta de clase de los datos de entrenamiento es incierta. En cambio, disponemos de un conjunto de etiquetas para cada instancia. Este problema está inspirado en el problema de la clasificación de neuronas, en el que un grupo de expertos proporciona una etiqueta de clase para cada instancia de manera individual. Se propone un método para aprender redes bayesianas utilizando vectores de cuentas, que representan el número de expertos que seleccionan cada etiqueta de clase para cada instancia. Estas redes bayesianas se evalúan utilizando bases de datos artificiales de problemas de aprendizaje supervisado.
Resumo:
This article analyzes the characteristics of four different social enterprise schools of though (social economy, earned-income school in developed countries, earned-income in emerging countries, and social innovation) and the influence of the contextual elements (cultural, political, economic and social) on their configuration. This article draws on the qualitative discussions of social enterprise in different regions of the world. This paper is intended to contribute to the field of social enterprise by broadening the understanding of the influence of environment and institutions on the emergence of social enterprise.
Resumo:
The Institute of Tropical Medicine in Antwerp hereby presents the results of two pilot distance learning training programmes, developed under the umbrella of the AFRICA BUILD project (FP7). The two courses focused on evidence-based medicine (EBM): with the aim of enhancing research and education, via novel approaches and to identify research needs emanating from the field. These pilot experiences, which were run both in English-speaking (Ghana), and French-speaking (Mali and Cameroon) partner institutions, produced targeted courses for the strengthening of research methodology and policy. The courses and related study materials are in the public domain and available through the AFRICA BUILD Portal (http://www.africabuild.eu/taxonomy/term/37); the training modules were delivered live via Dudal webcasts. This paper assesses the success and difficulties of transferring EBM skills with these two specific training programmes, offered through three different approaches: fully online facultative courses, fully online tutor supported courses or through a blended approach with both online and face-to-face sessions. Key factors affecting the selection of participants, the accessibility of the courses, how the learning resources are offered, and how interactive online communities are formed, are evaluated and discussed.
Resumo:
The distributed computing models typically assume every process in the system has a distinct identifier (ID) or each process is programmed differently, which is named as eponymous system. In such kind of distributed systems, the unique ID is helpful to solve problems: it can be incorporated into messages to make them trackable (i.e., to or from which process they are sent) to facilitate the message transmission; several problems (leader election, consensus, etc.) can be solved without the information of network property in priori if processes have unique IDs; messages in the register of one process will not be overwritten by others process if this process announces; it is useful to break the symmetry. Hence, eponymous systems have influenced the distributed computing community significantly either in theory or in practice. However, every thing in the world has its own two sides. The unique ID also has disadvantages: it can leak information of the network(size); processes in the system have no privacy; assign unique ID is costly in bulk-production(e.g, sensors). Hence, homonymous system is appeared. If some processes share the same ID and programmed identically is called homonymous system. Furthermore, if all processes shared the same ID or have no ID is named as anonymous system. In homonymous or anonymous distributed systems, the symmetry problem (i.e., how to distinguish messages sent from which process) is the main obstacle in the design of algorithms. This thesis is aimed to propose different symmetry break methods (e.g., random function, counting technique, etc.) to solve agreement problem. Agreement is a fundamental problem in distributed computing including a family of abstractions. In this thesis, we mainly focus on the design of consensus, set agreement, broadcast algorithms in anonymous and homonymous distributed systems. Firstly, the fault-tolerant broadcast abstraction is studied in anonymous systems with reliable or fair lossy communication channels separately. Two classes of anonymous failure detectors AΘ and AP∗ are proposed, and both of them together with a already proposed failure detector ψ are implemented and used to enrich the system model to implement broadcast abstraction. Then, in the study of the consensus abstraction, it is proved the AΩ′ failure detector class is strictly weaker than AΩ and AΩ′ is implementable. The first implementation of consensus in anonymous asynchronous distributed systems augmented with AΩ′ and where a majority of processes does not crash. Finally, a general consensus problem– k-set agreement is researched and the weakest failure detector L used to solve it, in asynchronous message passing systems where processes may crash and recover, with homonyms (i.e., processes may have equal identities), and without a complete initial knowledge of the membership.