957 resultados para Engineering, environmental
Resumo:
The large number of wetlands treating mining wastewaters around the world have mostly been constructed in temperate environments. Wetlands have yet to be proven in low rainfall, high evaporation environments and such conditions are common in many parts of Australia. BHP Australia Coal is researching whether wetlands have potential in central Queensland to treat coal mining wastewaters. In this region, mean annual rainfall is < 650 mm and evaporation > 2 000 mm. A pilot-scale wetland system has been constructed at an open-cut coal mine. The system comprises six treatment cells, each 125 m long and 10 m wide. The system is described in the paper and some initial results presented. Results over the first fourteen months of operation have shown that although pH has not increased enough to enable reuse or release of the water, sulfate reduction has been observed in parts of the system, as shown by the characteristic black precipitate and smell of hydrogen sulfide emanating from the wetlands. These encouraging signs have led to experiments aimed at identifying the factors limiting sulfate reduction. The first experiment, described herein, included four treatments where straw was overlain by soil and the water level varied, being either at the top of the straw, at the top of the soil, or about 5 cm above the soil. The effect of inoculating with sulfate-reducing bacteria was investigated. Two controls were included, one covered and one open, to enable the effect of evaporation to be determined. The final treatment consisted of combined straw/cattle manure overlain with soil. Results showed that sulfate reduction did occur, as demonstrated by pH increases and lowering of sulfate levels. Mean pH of the water was significantly higher after 19 days; in the controls, pH was < 3.3, whereas in the treatments, pH ranged from 5.4 to 6.7. The best improvement in sulfate levels occurred in the straw/cattle manure treatment. (C) 1997 IAWQ. Published by Elsevier Science Ltd.
Resumo:
Recent advances in computer technology have made it possible to create virtual plants by simulating the details of structural development of individual plants. Software has been developed that processes plant models expressed in a special purpose mini-language based on the Lindenmayer system formalism. These models can be extended from their architectural basis to capture plant physiology by integrating them with crop models, which estimate biomass production as a consequence of environmental inputs. Through this process, virtual plants will gain the ability to react to broad environmental conditions, while crop models will gain a visualisation component. This integration requires the resolution of the fundamentally different time scales underlying the approaches. Architectural models are usually based on physiological time; each time step encompasses the same amount of development in the plant, without regard to the passage of real time. In contrast, physiological models are based in real time; the amount of development in a time step is dependent on environmental conditions during the period. This paper provides a background on the plant modelling language, then describes how widely-used concepts of thermal time can be implemented to resolve these time scale differences. The process is illustrated using a case study. (C) 1997 Elsevier Science Ltd.
Resumo:
Wastewater control at storage terminals of liquid chemical products in bulk is very difficult because of the variety of products handled in the facilities generating effluents of variable composition. The main objective of this work was to verify if the Vibrio fischeri acute toxicity test could be routinely included in the wastewater management of those facilities along with physical and chemical analysis in order to evaluate and improve the quality of the generated effluents. The study was performed in two phases before and after the implementation of better operational practices/treatment technologies. Chemical oxygen demand (COD) and toxicity of treated effluents did not correlate showing that effluents with low COD contain toxic substances and non-biodegradable organic matter, which may be not degraded when discharged into the aquatic environment. Segregation of influents or pre-treatment based on toxicity results and biodegradability index were implemented in the facilities generating significant improvements in the quality of final effluents with reduction of Biochemical oxygen demand (BOD) and toxicity. The integration of physical and chemical analysis with the V.fischeri toxicity test turned out to be an excellent tool for wastewater management in chemical terminals allowing rapid decision making for pollution control and prevention measures. Reuse of rain water was also proposed and when implemented by the facilities resulted in economical and environmental benefits. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Measurement of nitrifiable nitrogen contained in wastewater by combining the existing respirometric and titrimetric principles is reported. During an in-sensor-experiment using nitrifying activated sludge. both the dissolved oxygen (DO) and pH in the mixed liquor were measured, and the FH was controlled at a set-point through titration of base or acid. A combination of the oxygen uptake rate (OUR), which was obtained from the measured DO signal, and the titration data allowed calculation of the nitrifiable nitrogen and the short-term biological oxygen demand (BOD) of the wastewater sample that was initially added to the sludge. The calculation was based solely on stoichiometric relationships. The approach was preliminarily tested with two types of wastewaters using a prototype sensor. Good correlation was obtained. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Activated sludge models are used extensively in the study of wastewater treatment processes. While various commercial implementations of these models are available, there are many people who need to code models themselves using the simulation packages available to them, Quality assurance of such models is difficult. While benchmarking problems have been developed and are available, the comparison of simulation data with that of commercial models leads only to the detection, not the isolation of errors. To identify the errors in the code is time-consuming. In this paper, we address the problem by developing a systematic and largely automated approach to the isolation of coding errors. There are three steps: firstly, possible errors are classified according to their place in the model structure and a feature matrix is established for each class of errors. Secondly, an observer is designed to generate residuals, such that each class of errors imposes a subspace, spanned by its feature matrix, on the residuals. Finally. localising the residuals in a subspace isolates coding errors. The algorithm proved capable of rapidly and reliably isolating a variety of single and simultaneous errors in a case study using the ASM 1 activated sludge model. In this paper a newly coded model was verified against a known implementation. The method is also applicable to simultaneous verification of any two independent implementations, hence is useful in commercial model development.
Resumo:
In this paper a methodology for integrated multivariate monitoring and control of biological wastewater treatment plants during extreme events is presented. To monitor the process, on-line dynamic principal component analysis (PCA) is performed on the process data to extract the principal components that represent the underlying mechanisms of the process. Fuzzy c-means (FCM) clustering is used to classify the operational state. Performing clustering on scores from PCA solves computational problems as well as increases robustness due to noise attenuation. The class-membership information from FCM is used to derive adequate control set points for the local control loops. The methodology is illustrated by a simulation study of a biological wastewater treatment plant, on which disturbances of various types are imposed. The results show that the methodology can be used to determine and co-ordinate control actions in order to shift the control objective and improve the effluent quality.
Resumo:
Recent investigations have demonstrated the presence of an unidentified source of polychlorinated dibenzo-p-dioxins (PCDDs) in the coastal zone of Queensland (Australia). The present study provides new information on the possible PCDD sources and their temporal input to this environment. Two estuarine sediment cores were collected in northern Queensland for which radiochemical chronologies were established. Core sections from different depositional ages, up to three centuries, have been analyzed for 2,3,7,8-substituted PCDDs and polychlorinated dibenzofurans (PCDFs). Variations of PCDD concentrations in the sediment cores over several centuries of depositional history were relatively small, and elevated PCDD levels were still present in sediment slices from the early 17th century. PCDD/F isomer patterns and congener profiles in sediments deposited during the last 350 years were almost identical and correlated well to the characteristic profiles observed in surface sediments and soils from the entire Queensland coastline. Profiles were dominated by higher chlorinated PCDDs, in particular octachlorodibenzodioxin (OCDD), whereas PCDF concentrations were below or near the limit of detection. These results indicate the presence of a PCDD source prior to industrialization and production of commercial organochlorine products. Further, the present study demonstrates that PCDD input patterns have been similar along an extensive but localized area over at least several centuries, contributing relatively high concentrations of PCDDs to the coastal system of Queensland.
Resumo:
Cylindrospermopsis raciborskii produces the cyanotoxin cylindrospermopsin, which is commonly found in SouthEast Queensland water reservoirs, and has been responsible for the closure of these reservoirs as a source of drinking water in recent times. Thus, alternative more effective treatment methods need to be investigated for the removal of toxins such as cylindrospermopsin. This study examined the effectiveness of two brands of titanium dioxide under UV photolysis for the degradation of cylindrospermopsin. Results indicate that titanium dioxide is an efficient photocatalyst for cylindrospermopsin degradation. The titanium dioxide (TiO2), brand Degussa P-25 was found to be more efficient than the alternate brand Hombikat UV-100. There was an influence from solution pH (4, 7, and 9) with both brands of titanium dioxide, with high pH resulting in the best degradation rate. Importantly, there was no adsorption of cylindrospermopsin to titanium dioxide particles as seen with other cyanotoxins, which would adversely influence the degradation rate. Degradation rates were not influenced by temperature (19-34 degreesC) when P-25 was the source of TiO2, some temperature influence was observed with UV-100. Dissolved organic carbon concentration will reduce the efficiency of titanium dioxide for cylindrospermopsin degradation, however the presence of other inorganic matter in natural waters greatly assists the photocatalytic process. With minimal potentially toxic by-product formation expected with this treatment, and the effective degradation of cylindrospermopsin, titanium dioxide UV photolysis is a promising speculative alternative water treatment method. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The Australian minerals industry, which is dominated by coal, gold, bauxite, iron ore, base metals and mineral sand operations, is widely scattered across a continent which has a wide range of climatic zones ranging from moist temperate in the south through hot deserts in the centre to moist tropical in the north. There is an emphasis at most mines on establishing native ecosystems after mining, and technologies have had to be developed to ensure successful establishment and stability of these ecosystems under often adverse climatic conditions. This paper describes some of the innovative practices used to establish native ecosystenms in bauxite, mineral sand and coal operations across diverse biogeographic zones. Additionally, brief reference is made to an ecosystem function analysis, which has been developed to assess the success of establishment of these ecosystems. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The Brisbane River and Moreton Bay Study, an interdisciplinary study of Moreton Bay and its major tributaries, was initiated to address water quality issues which link sewage and diffuse loading with environmental degradation. Runoff and deposition of fine-grained sediments into Moreton Bay, followed by resuspension, have been linked with increased turbidity and significant loss of seagrass habitat. Sewage-derived nutrient enrichment, particularly nitrogen (N), has been linked to algal blooms by sewage plume maps. Blooms of a marine cyanobacterium, Lyngbya majuscula, in Moreton Bay have resulted in significant impacts on human health (e.g., contact dermatitis) and ecological health (e.g., seagrass loss), and the availability of dissolved iron from acid sulfate soil runoff has been hypothesised. The impacts of catchment activities resulting in runoff of sediments, nutrients and dissolved iron on the health of the Moreton Bay waterways are addressed. The Study, established by 6 local councils in association with two state departments in 1994, forms a regional component of a national and state program to achieve ecologically sustainable use of the waterways by protecting and enhancing their health, while maintaining economic and social development. The Study framework illustrates a unique integrated approach to water quality management whereby scientific research, community participation and the strategy development were done in parallel with each other. This collaborative effort resulted in a water quality management strategy which focuses on the integration of socioeconomic and ecological values of the waterways. This work has led to significant cost savings in infrastructure by providing a clear focus on initiatives towards achieving healthy waterways. The Study's Stage 2 initiatives form the basis for this paper.
Resumo:
FILTER is an innovative, CSIRO developed system for treating effluent using high rate land application and subsequent effluent recapture via a closely spaced, subsurface drainage network. We report on the summer performance of a FILTER system established in a subtropical environment on a relatively impermeable swelling clay soil underlain by a deep regional water table. Using secondary treated sewage effluent, the FILTER system produced effluent of tertiary nutrient standards (less than or equal to5 mg/L TN; less than or equal to1 mg/L TP), with salinity levels suitable for subsequent irrigation reuse (EC less than or equal to2.5 dS/m). Removal of faecal coliforms was considerably less effective. The hydraulic loading rate achieved was about two and a half times larger than conventional irrigation demand, but this was associated with high deep percolation losses (e 3 mm/day). Comparisons are made with the original FILTER system developed and tested by Jayawardane et al. in temperate Australia. Suggestions are made for modifications to, and further testing of FILTER in a subtropical environment.
Resumo:
Recent years have seen the introduction of new and varied designs of activated sludge plants. With increasing needs for higher efficiencies and lower costs, the possibility of a plant that operates more effectively has created the need for tools that can be used to evaluate and compare designs at the design stage. One such tool is the operating space diagram. It is the aim of this paper to present this tool and demonstrate its application and relevance to design using a simple case study. In the case study, use of the operating space diagram suggested changes in design that would improve the flexibility of the process. It also was useful for designing suitable control strategies.
Resumo:
Industry professionals of the near future will be supported by an IT infrastructure that enables them to complete a task by drawing on resources and people with expertise anywhere in the world, and access to knowledge through specific training programs that address the task requirements. The increasing uptake of new technologies enables information to reach a diverse population and to provide flexible learning environments 24 hours a day, 7 days a week. This paper examines one of the key areas where the World Wide Web will impact on the water and wastewater industries, namely technology transfer and training. The authors will present their experiences of developing online training courses for wastewater industry professionals over the last two years. The perspective is that of two people working at the coalface.
Resumo:
This investigation demonstrates the capability of a bench-scale sequencing batch reactor (SBR) to biodegrade an inhibitory substrate at a high loading rate. A SBR loading rate of 3.12 kg phenol.m(-3)d(-1) (2.1 g COD.g(-1) MLVSS d(-1)) with a COD removal efficiency of 97% at a SRT of 4 days and a HRT of 10 hours was achieved; this rate was not reached before. The SBR was operated at 4 hours cycle, including 3 hours react phase. The synthetic wastewater of 1300 mg/L phenol was the sole carbon source. Oxygen uptake rates (OUR) were monitored in-situ at various stages of the SBR. The oxygen mass transfer coefficient, K(L)a, of 12.6 h(-1) was derived from respirometry. Use of respirometry in SBR aided the tracking of the soluble substrate through OUR.
Resumo:
The IWA Anaerobic Digestion Modelling Task Group was established in 1997 at the 8th World Congress on,Anaerobic Digestion (Sendai, Japan) with the goal of developing a generalised anaerobic digestion model. The structured model includes multiple steps describing biochemical as well as physicochemical processes. The biochemical steps include disintegration from homogeneous particulates to carbohydrates, proteins and lipids; extracellular hydrolysis of these particulate substrates to sugars, amino acids, and long chain fatty acids (LCFA), respectively; acidogenesis from sugars and amino acids to volatile fatty acids (VFAs) and hydrogen; acetogenesis of LCFA and VFAs to acetate; and separate methanogenesis steps from acetate and hydrogen/CO2. The physico-chemical equations describe ion association and dissociation, and gas-liquid transfer. Implemented as a differential and algebraic equation (DAE) set, there are 26 dynamic state concentration variables, and 8 implicit algebraic variables per reactor vessel or element. Implemented as differential equations (DE) only, there are 32 dynamic concentration state variables.