961 resultados para Endothelial cytoskeleton
Resumo:
The fatty acid profile of erythrocyte membranes has been considered a good biomarker for several pathologic situations. Dietary intake, digestion, absorption, metabolism, storage and exchange amongst compartments, greatly influence the fatty acids composition of different cells and tissues. Lipoprotein and hepatic lipases were also involved in fatty acid availability. In the present work we examined the correlations between fatty acid in Red Blood Cells (RBCs) membranes, the fatty acid desaturase and elongase activities, glycaemia, blood lipids, lipoproteins and apoproteins, and the endothelial lipase (EL) mass in plasma. Twenty one individuals were considered in the present study, with age >18 y. RBCs membranes were obtained and analysed for fatty acid composition by gas chromatography. The amount of fatty acids (as percentage) were analysed, and the ratios between fatty acid 16:1/16:0; 18:1/18:0; 18:0/16:0; 22:6 n-3/20:5 n-3 and 20:4 n-6/18:2 n-6 were calculated. Bivariate analysis (rs) and partial correlations were determined. SCD16 estimation activity correlated positively with BMI (rs=0.466, p=0.043) and triacylglycerols (TAG) (rs=0.483, p=0.026), and negatively with the ratio ApoA1/ApoB (rs=-0.566, p=0.007). Endothelial lipase (EL) correlated positively with the EPA/AA ratio in RBCs membranes (rs=0.524, p=0.045). After multi-adjustment for BMI, age, hs-CRP and dietary n3/n6 ratio, the correlations remained significant between EL and EPA/AA ratio. At the best of our knowledge this is the first report that correlated EL with the fatty acid profile of RBCs plasma membranes. The association found here can suggest that the enzyme may be involved in the bioavailability and distribution of n-3/n-6 fatty acids, suggesting a major role for EL in the pathophysiological mechanisms involving biomembranes’ fatty acids, such as in inflammatory response and eicosanoids metabolites pathways.
Resumo:
We model the cytoskeleton as a fractal network by identifying each segment with a simple Kelvin-Voigt element with a well defined equilibrium length. The final structure retains the elastic characteristics of a solid or a gel, which may support stress, without relaxing. By considering a very simple regular self-similar structure of segments in series and in parallel, in one, two, or three dimensions, we are able to express the viscoelasticity of the network as an effective generalized Kelvin-Voigt model with a power law spectrum of retardation times L similar to tau(alpha). We relate the parameter alpha with the fractal dimension of the gel. In some regimes ( 0 < alpha < 1), we recover the weak power law behaviors of the elastic and viscous moduli with the angular frequencies G' similar to G" similar to w(alpha) that occur in a variety of soft materials, including living cells. In other regimes, we find different power laws for G' and G".
Resumo:
Methamphetamine (METH) is a potent psychostimulant highly used worldwide. Recent studies evidenced the involvement of METH in the breakdown of the blood-brain-barrier (BBB) integrity leading to compromised function. The involvement of the matrix metalloproteinases (MMPs) in the degradation of the neurovascular matrix components and tight junctions (TJs) is one of the most recent findings in METH-induced toxicity. As BBB dysfunction is a pathological feature of many neurological conditions, unveiling new protective agents in this field is of major relevance. AcetylL-carnitine (ALC) has been described to protect the BBB function in different paradigms, but the mechanisms underling its action remain mostly unknown. Here, the immortalized bEnd.3 cell line was used to evaluate the neuroprotective features of ALC in METH-induced damage. Cells were exposed to ranging concentrations of METH, and the protective effect of ALC 1 mM was assessed 24 h after treatment. F-actin rearrangement, TJ expression and distribution, and MMPs activity were evaluated. Integrin-linked kinase (ILK) knockdown cells were used to assess role of ALC in ILK mediated METHtriggered MMPs’ activity. Our results show that METH led to disruption of the actin filaments concomitant with claudin-5 translocation to the cytoplasm. These events were mediated by MMP-9 activation in association with ILK overexpression. Pretreatment with ALC prevented METH-induced activation of MMP-9, preserving claudin-5 location and the structural arrangement of the actin filaments. The present results support the potential of ALC in preserving BBB integrity, highlighting ILK as a new target for the ALC therapeutic use.
Resumo:
Dissertação para obtenção do Grau de Mestre em Genética Molecular e Biomedicina
Resumo:
Background: Proteinuria (PT) with SRL appears not only after conversion from a calcineurin inhibitor (CI), but also in de novo patients. The PT may be related to a hemodynamic effect of CI withdrawal or to a direct effect of SRL in glomerulus (GL). Recently an association between PT in SRL patients and FSGS lesions has been described. It is also known that SRL decrease VEGF synthesis and experimental data suggest that VEGF is essential to podocyte survival and differentiation. Aim: To determine if glomerular lesions and PT in SRL patients could be related to altered glomerular VEGF expression. Material and methods: We evaluated glomerular VEGF expression in 10 biopsies: A-allograft kidney in backtable (n=3); B-native normal kidney (n=1); C-native kidney with FSGS lesions (n=2); D-allograft kidney with FSGS lesions from proteinuric patients under SRL after conversion from CI (n=3); E-allograft kidney in proteinuric patient under SRL with a membranous glomerulonephritis (n=1). We employed indirect immunohistochemistry in paraffin-embedded sections using a mouse monoclonal antibody against human VEGF-C1 (Santa Cruz). Results: The controls biopsies (A; B) showed normal global VEGF expression, with strong podocyte staining. The VEGF expression in the group C was similar to the controls, although no FSGS lesions were observed in the stained GL. The group D showed normal VEGF expression in the apparently normal GL, hypertrophied podocytes with reduction of VEGF in anomalous GL, and no staining in slcerotic lesions. We observed a gradual reduction of VEGF expression with progressive dedifferentiation of podocytes. In the group E the VEGF was globally reduced, with some hypertrophied podocytes expressing decreased VEGF. Conclusion: We confirmed the diminished VEGF expression in injured podocytes of SRL patients.This decreased expression may result from a direct effect of SRL and precede the appearance of FSGS lesions and PT. Further studies are needed with greater number of cases and controls, including early biopsies of patients under SRL.
Resumo:
PURPOSE: The Genous™ stent (GS) is designed to accelerate endothelization, which is potentially useful in the pro-thrombotic environment of ST-elevation acute myocardial infarction (STEMI). We aimed to evaluate the safety and effectiveness of the GS in the first year following primary percutaneous coronary intervention (PCI) and to compare our results with the few previously published studies. METHODS AND MATERIALS: All patients admitted to a single center due to STEMI that underwent primary PCI using exclusively GS, between May 2006 and January 2012, were enrolled. The primary study endpoints were major adverse cardiac events (MACEs), defined as the composite of cardiac death, acute myocardial infarction and target vessel revascularization, at one and 12months. RESULTS: In the cohort of 109 patients (73.4% male, 59 ±12years), 24.8% were diabetic. PCI was performed in 116 lesions with angiographic success in 99.1%, using 148 GS with median diameter of 3.00mm (2.50-4.00) and median length of 15mm (9-33). Cumulative MACEs were 2.8% at one month and 6.4% at 12months. Three stent thromboses (2.8%), all subacute, and one stent restenosis (0.9%) occurred. These accounted for the four target vessel revascularizations (3.7%). At 12months, 33.9% of patients were not on dual antiplatelet therapy. CONCLUSIONS: GS was safe and effective in the first year following primary PCI in STEMI, with an apparently safer profile comparing with the previously published data. SUMMARY: We report the safety and effectiveness of the Genous™ stent (GS) in the first year following primary percutaneous coronary intervention in ST-elevation acute myocardial infarction. A comprehensive review of the few studies that have been published on this subject was included and some suggest a less safe profile of the GS. Our results and the critical review included may add information and reinforce the safety and effectiveness of the GS in ST-elevation in acute myocardial infarction.
Resumo:
AIMS: To evaluate the long-term clinical outcomes following percutaneous coronary intervention (PCI) with the Genous stent in an unselected population. METHODS: All patients admitted to a single center who underwent PCI using the GS exclusively, between May 2006 and May 2012, were enrolled, and a clinical follow-up of up to 60 months was carried out. The primary endpoint of major adverse cardiac event (MACE) rate was defined as the composite of cardiac death, acute myocardial infarction (AMI), and target lesion revascularization (TLR). RESULTS: Of the 450 patients included (75.1% male; 65.5 ± 11.7 years), 28.4% were diabetic and acute coronary syndrome was the reason for PCI in 76.4%. Angioplasty was performed in 524 lesions using 597 Genous stents, with angiographic success in 97.1%. At a median of 36 months of follow-up (range, 1-75 months), MACE, AMI, TLR, stent restenosis (SR), and stent thrombosis (ST) rates were 15.6%, 8.4%, 4.4%, 3.8%, and 2.2%, respectively. Between 12 and 24 months, the TLR, SR, and ST rates practically stabilized, up to 60 months. Bifurcation lesions were independently associated with MACE, TLR, and SR. CONCLUSION: This is the first study reporting clinical results with the Genous stent up to 60 months. The Genous stent was safe and effective in the long-term, in an unselected population.
Resumo:
PURPOSE: The aim of the this study was to determine the effect of intravitreal antivascular endothelial growth factor injections on intraocular pressure (IOP) and identify possible risk factors for the development of increased IOP. MATERIALS AND METHODS: This prospective study included a total of 106 eyes receiving intravitreal injection of bevacizumab as treatment for macular edema or active choroidal neovascularization. IOP was measured by Goldmann applanation tonometry immediately before the intravitreal injection and 5 min, 1 h and 15 days after the procedure. The records of the study patients were reviewed for age, gender, history of glaucoma, diabetes mellitus, phakic status, systemic and topical medication and number of previous injections. Subconjunctival reflux was registered. IOP elevation was defined as IOP ≥21 mm Hg and/or a change from baseline of ≥5 mm Hg recorded at least on two or more measurements on the same visit. RESULTS: Mean preoperative IOP was 15.31 ± 3.90 mm Hg and postoperative IOP values were 27.27 ± 11.87 mm Hg (after 5 min), 17.59 ± 6.24 mm Hg (after 1 h) and 16.86 ± 3.62 mm Hg (after 15 days). The IOP variation was statistically significant between pre- and postoperative measurements (p < 0.05). Subconjunctival reflux was recorded in 11.3%, and in this subgroup the IOP at 5 min and at 1 h was lower than preoperative IOP (p < 0.05). CONCLUSIONS: More than one third of the eyes achieved IOPs >30 mm Hg 5 min after injection. Subconjunctival reflux contributed to a lower mean postoperative IOP (p < 0.05). Considerations for the management include prophylactic IOP lowering with medical therapy and/or preinjection ocular decompression for patients with a history of glaucoma or ocular hypertension and switching to an as-needed injection protocol in patients suffering a marked IOP rise in previous injections. © 2015 S. Karger AG, Basel.
Resumo:
RESUMO: As células endoteliais definem e delineiam todo o sistema vascular...Nesta tese procurámos explorar o papel que o ambiente tumoral exerce sobre as células endoteliais. ... Avaliamos também a capacidade anti-angiogénica de alguns derivados do estrogénio... Em suma os nossos resultados mostram a importância de um controlo rigoroso da regulação transcricional...
Resumo:
Inspired by the native co-existence of multiple cell types and from the concept of deconstructing the stem cell niche, we propose a co-encapsulation strategy within liquified capsules. The present team has already proven the application of liquified capsules as bioencapsulation systems1. Here, we intend to use the optimized system towards osteogenic differentiation. Capsules encapsulating adipose stem cells alone (MONO-capsules) or in co-culture with endothelial cells (CO-capsules) were maintained in endothelial medium with or without osteogenic differentiation factors. The suitability of the capsules for living stem and endothelial cells encapsulation was demonstrated by MTS and DNA assays. The osteogenic differentiation was assessed by quantifying the deposition of calcium and the activity of ALP up to 21 days. CO capsules had an enhanced osteogenic differentiation, even when cultured in the absence of osteogenic factors. Furthermore, osteopontin and CD31 could be detected, which respectively indicate that osteogenic differentiation had occurred and endothelial cells maintained their phenotype. An enhanced osteogenic differentiation by co-encapsulation was also confirmed by the upregulation of osteogenic markers (BMP-2, RUNX2, BSP) while the expression of angiogenic markers (VEGF, vWF, CD31) revealed the presence of endothelial cells. The proposed capsules can also act as a growth factor release system upon implantation, as showed by VEGF and BMP-2 quantification. These findings demonstrate that the co-encapsulation of stem and endothelial cells within liquified injectable capsules provides a promising strategy for bone tissue engineering.
Resumo:
Tese de Doutoramento em Engenharia de Tecidos, Medicina Regenerativa e Células Estaminais.
Resumo:
Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Engenharia Clínica)
Resumo:
OBJECTIVE: To assess the acute effects of high glucose concentrations on vascular reactivity in the isolated non diabetic rabbit kidney. METHODS: Rabbits were anaesthetized for isolation of the kidneys. Renal arteries and veins were cannulated for perfusion with Krebs-Henselleit solution and measurement of perfusion pressure. After 3 hours of perfusion with glucose 5,5 mM (control ) and 15 mM, the circulation was submitted to sub maximal precontraction (80% of maximal response) trough continuous infusion of noradrenaline 10 mM. Vascular reactivity was then assessed trough dose-responses curves with endothelium-dependent (acetylcholine) and independent (sodium nitroprusside) vasodilators. The influence of hyperosmolarity was analyzed with perfusion with mannitol 15mM. RESULTS: A significant reduction in the endothelium-dependent vasodilation in glucose 15mM group was observed compared to that in control, but there was no difference in endothelium-independent vasodilation. After perfusion with mannitol 15 mM, a less expressive reduction in endothelium-dependent vasodilation was observed, only reaching significance in regard to the greatest dose of acetylcholine. CONCLUSION: High levels of glucose similar to those found in diabetic patients in the postprandial period can cause significant acute changes in renal vascular reactivity rabbits. In diabetic patients these effects may also occur and contribute to diabetes vascular disease.