982 resultados para Electromagnetic waves


Relevância:

60.00% 60.00%

Publicador:

Resumo:

On heat cured acrylic resins by microwaves energy the action of electromagnetic waves on methylmethacrylate promote the polymerization process. However, part of this energy is absorbed by the gypsum present in the flask and the function of this gypsum is to maintain the characteristics of specimen, nevertheless is unknown in the literature as the amount of water present in this gypsum affects the characteristics of acrylic resin. The proposal of this study was verified if dried gypsum influenced in some properties of the acrylic resins thermally activated by microwaves: presence of porosity, microhardness, roughness, flexural strength and dimensional change. Two different types of acrylic resin for complete denture were utilized: Lucitone 550 e Vipi-Wave and groups were formed: Lucitone 550, polymerization by microwave energy without gypsum treatment; Lucitone 550, polymerization by microwave energy with pretreatment gypsum; Vipi-Wave by microwave energy without gypsum treatment; Vipi Wave, polymerization by microwave energy with pretreatment gypsum; Lucitone 550 control group polymerization in hot water bath. For both situations were performed analysis of microhardness and porosity three different metallic shaped specimens were formed with followed dimensions: 2,0x2,0x2,0cm (8cm3); 2,0x2,0x1,0 (4cm3) e 2,0x2,0x0,5 (2cm3). Standardized wax specimens was used to prepare groups (n=9) and included in glass fiber flasks. The gypsum dry was made by microwave oven cycle (10min and 600W) and then the flasks were maintained in dry oven during two hours. Polymerizations of specimens were made and then polished. Wax patterns #7 obtained from the metal were embedded in plastic flask and following the processes of pressing and polymerization of the resin according to established groups. To evaluate the flexural strength, specimens 65mm x 10mm x 3.0mm from metallic patterns in bar format were made. ...

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The quality of astronomical sites is the first step to be considered to have the best performances from the telescopes. In particular, the efficiency of large telescopes in UV, IR, radio etc. is critically dependent on atmospheric transparency. It is well known that the random optical effects induced on the light propagation by turbulent atmosphere also limit telescope’s performances. Nowadays, clear appears the importance to correlate the main atmospheric physical parameters with the optical quality reachable by large aperture telescopes. The sky quality evaluation improved with the introduction of new techniques, new instrumentations and with the understanding of the link between the meteorological (or synoptical parameters and the observational conditions thanks to the application of the theories of electromagnetic waves propagation in turbulent medias: what we actually call astroclimatology. At the present the site campaigns are evolved and are performed using the classical scheme of optical seeing properties, meteorological parameters, sky transparency, sky darkness and cloudiness. New concept are added and are related to the geophysical properties such as seismicity, microseismicity, local variability of the climate, atmospheric conditions related to the ground optical turbulence and ground wind regimes, aerosol presence, use of satellite data. The purpose of this project is to provide reliable methods to analyze the atmospheric properties that affect ground-based optical astronomical observations and to correlate them with the main atmospheric parameters generating turbulence and affecting the photometric accuracy. The first part of the research concerns the analysis and interpretation of longand short-time scale meteorological data at two of the most important astronomical sites located in very different environments: the Paranal Observatory in the Atacama Desert (Chile), and the Observatorio del Roque de Los Muchachos(ORM) located in La Palma (Canary Islands, Spain). The optical properties of airborne dust at ORM have been investigated collecting outdoor data using a ground-based dust monitor. Because of its dryness, Paranal is a suitable observatory for near-IR observations, thus the extinction properties in the spectral range 1.00-2.30 um have been investigated using an empirical method. Furthermore, this PhD research has been developed using several turbulence profilers in the selection of the site for the European Extremely Large Telescope(E-ELT). During the campaigns the properties of the turbulence at different heights at Paranal and in the sites located in northern Chile and Argentina have been studied. This given the possibility to characterize the surface layer turbulence at Paranal and its connection with local meteorological conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, we consider a simple model problem for the electromagnetic exploration of small perfectly conducting objects buried within the lower halfspace of an unbounded two–layered background medium. In possible applications, such as, e.g., humanitarian demining, the two layers would correspond to air and soil. Moving a set of electric devices parallel to the surface of ground to generate a time–harmonic field, the induced field is measured within the same devices. The goal is to retrieve information about buried scatterers from these data. In mathematical terms, we are concerned with the analysis and numerical solution of the inverse scattering problem to reconstruct the number and the positions of a collection of finitely many small perfectly conducting scatterers buried within the lower halfspace of an unbounded two–layered background medium from near field measurements of time–harmonic electromagnetic waves. For this purpose, we first study the corresponding direct scattering problem in detail and derive an asymptotic expansion of the scattered field as the size of the scatterers tends to zero. Then, we use this expansion to justify a noniterative MUSIC–type reconstruction method for the solution of the inverse scattering problem. We propose a numerical implementation of this reconstruction method and provide a series of numerical experiments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Wir untersuchen die numerische Lösung des inversen Streuproblems der Rekonstruktion der Form, Position und Anzahl endlich vieler perfekt leitender Objekte durch Nahfeldmessungen zeitharmonischer elektromagnetischer Wellen mit Hilfe von Metalldetektoren. Wir nehmen an, dass sich die Objekte gänzlich im unteren Halbraum eines unbeschränkten zweischichtigen Hintergrundmediums befinden. Wir nehmen weiter an, dass der obere Halbraum mit Luft und der untere Halbraum mit Erde gefüllt ist. Wir betrachten zuerst die physikalischen Grundlagen elektromagnetischer Wellen, aus denen wir zunächst ein vereinfachtes mathematisches Modell ableiten, in welchem wir direkt das elektromagnetische Feld messen. Dieses Modell erweitern wir dann um die Messung des elektromagnetischen Feldes von Sendespulen mit Hilfe von Empfangsspulen. Für das vereinfachte Modell entwickeln wir, unter Verwendung der Theorie des zugehörigen direkten Streuproblems, ein nichtiteratives Verfahren, das auf der Idee der sogenannten Faktorisierungsmethode beruht. Dieses Verfahren übertragen wir dann auf das erweiterte Modell. Wir geben einen Implementierungsvorschlag der Rekonstruktionsmethode und demonstrieren an einer Reihe numerischer Experimente die Anwendbarkeit des Verfahrens. Weiterhin untersuchen wir mehrere Abwandlungen der Methode zur Verbesserung der Rekonstruktionen und zur Verringerung der Rechenzeit.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduzione. Le cellule mesenchimali derivate dal tessuto adiposo (hASC) rappresentano un importante strumento per la terapia cellulare, in quanto derivano da un tessuto adulto abbondante e facilmente reperibile. Con il dispositivo medico Lipogems l’isolamento di tali cellule è eseguito esclusivamente mediante sollecitazioni meccaniche. Il prodotto ottenuto è quindi minimamente manipolato e subito utilizzabile. Ad oggi, il condizionamento pro-differenziativo delle staminali è per lo più attuato mediante molecole di sintesi. Tuttavia, altri fattori possono modulare la fisiologia cellulare, come gli stimoli fisici e molecole naturali. Onde elettromagnetiche hanno indotto in modelli cellulari staminali l’espressione di alcuni marcatori di differenziamento e, in cellule adulte, una riprogrammazione, mentre estratti embrionali di Zebrafish sono risultati antiproliferativi sia in vitro che in vivo. Metodi. La ricerca di nuove strategie differenziative sia di natura fisica che molecolare, nel particolare onde acustiche ed estratti embrionali di Zebrafish, è stata condotta utilizzando come modello cellulare le hASC isolate con Lipogems. Onde acustiche sono state somministrate mediante l’utilizzo di due apparati di trasduzione, un generatore di onde meccaniche e il Cell Exciter . I trattamenti con gli estratti embrionali sono stati effettuati utilizzando diverse concentrazioni e diversi tempi sperimentali. Gli effetti sull’espressione dei marcatori di staminalità e differenziamento relativi ai trattamenti sono stati saggiati in RT-PCR quantitativa relativa e/o in qPCR. Per i trattamenti di tipo molecolare è stata valutata anche la proliferazione. Risultati e conclusioni. La meta-analisi dei dati delle colture di controllo mostra la stabilità d’espressione genica del modello. I trattamenti con i suoni inducono variazioni dell’espressione genica, suggerendo un ruolo regolatorio di tali stimoli, in particolare del processo di commitment cardiovascolare. Due degli estratti embrionali di Zebrafish testati inibiscono la proliferazione alle 72 ore dalla somministrazione. L’analisi d’espressione associata ai trattamenti antiproliferativi suggerisce che tale effetto abbia basi molecolari simili ai processi di differenziamento.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plasmonic nanoparticles are great candidates for sensing applications with optical read-out. Plasmon sensing is based on the interaction of the nanoparticle with electromagnetic waves where the particle scatters light at its resonance wavelength. This wavelength depends on several intrinsic factors like material, shape and size of the nanoparticle as well as extrinsic factors like the refractive index of the surrounding medium. The latter allows the nanoparticle to be used as a sensor; changes in the proximate environment can be directly monitored by the wavelength of the emitted light. Due to their minuscule size and high sensitivity this allows individual nanoparticles to report on changes in particle coverage.rnrnTo use this single particle plasmon sensor for future sensing applications it has to meet the demand for detection of incidents on the single molecule level, such as single molecule sensing or even the detection of conformational changes of a single molecule. Therefore, time resolution and sensitivity have to be enhanced as today’s measurement methods for signal read-out are too slow and not sensitive enough to resolve these processes. This thesis presents a new experimental setup, the 'Plasmon Fluctuation Setup', that leads to tremendous improvements in time resolution and sensitivity. This is achieved by implementation of a stronger light source and a more sensitive detector. The new setup has a time resolution in the microsecond regime, an advancement of 4-6 orders of magnitude to previous setups. Its resonance wavelength stability of 0.03 nm, measured with an exposure time of 10 ms, is an improvement of a factor of 20 even though the exposure time is 3000 times shorter than in previous reports. Thus, previously unresolvable wavelength changes of the plasmon sensor induced by minor local environmental alteration can be monitored with extremely high temporal resolution.rnrnUsing the 'Plasmon Fluctuation Setup', I can resolve adsorption events of single unlabeled proteins on an individual nanorod. Additionally, I monitored the dynamic evolution of a single protein binding event on a millisecond time scale. This feasibility is of high interest as the role of certain domains in the protein can be probed by a study of modified analytes without the need for labels possibly introducing conformational or characteristic changes to the target. The technique also resolves equilibrium fluctuations in the coverage, opening a window into observing Brownian dynamics of unlabeled macromolecules. rnrnA further topic addressed in this thesis is the usability of the nanoruler, two nanospheres connected with a spacer molecule, as a stiffness sensor for the interparticle linker under strong illumination. Here, I discover a light induced collapse of the nanoruler. Furthermore, I exploit the sensing volume of a fixed nanorod to study unlabeled analytes diffusing around the nanorod at concentrations that are too high for fluorescence correlation spectroscopy but realistic for biological systems. Additionally, local pH sensing with nanoparticles is achieved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the last years the number of shoulder arthroplasties has been increasing. Simultaneously the study of their shape, size and strength and the reasons that bring to a possible early explantation have not yet been examined in detail. The research carried out directly on explants is practically nonexistent, this means a poor understanding of the mechanisms leading the patient and so the surgeon, to their removal. The analysis of the mechanisms which are the cause of instability, dislocation, broken, fracture, etc, may lead to a change in the structure or design of the shoulder prostheses and lengthen the life of the implant in situ. The idea was to analyze 22 explants through three methods in order to find roughness, corrosion and surface wear. In the first method, the humeral heads and/or the glenospheres were examined with the interferometer, a machine that through electromagnetic waves gives information about the roughness of the surfaces under examination. The output of the device was a total profile containing both roughness and information on the waves (representing the spatial waves most characteristic on the surface). The most important value is called "roughness average" and brings the average value of the peaks found in the local defects of the surfaces. It was found that 42% of the prostheses had considerable peak values in the area where the damage was caused by the implant and not only by external events, such as possibly the surgeon's hand. One of the problems of interest in the use of metallic biomaterials is their resistance to corrosion. The clinical significance of the degradation of metal implants has been the purpose of the second method; the interaction between human body and metal components is critical to understand how and why they arrive to corrosion. The percentage of damage in the joints of the prosthetic components has been calculated via high resolution photos and the software ImageJ. The 40% and 50% of the area appeared to have scratches or multiple lines due to mechanical artifacts. The third method of analysis has been made through the use of electron microscopy to quantify the wear surface in polyethylene components. Different joint movements correspond to different mechanisms of damage, which were imprinted in the parts of polyethylene examined. The most affected area was located mainly in the side edges. The results could help the manufacturers to modify the design of the prostheses and thus reduce the number of explants. It could also help surgeons in choosing the model of the prosthesis to be implanted in the patient.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Imaging of biological samples has been performed with a variety of techniques for example electromagnetic waves, electrons, neutrons, ultrasound and X-rays. Also conventional X-ray imaging represents the basis of medical diagnostic imaging, it remains of limited use in this application because it is based solely on the differential absorption of X-rays by tissues. Coherent and bright photon beams, such as those produced by third-generation synchrotron X-ray sources, provide further information on subtle X-ray phase changes at matter interfaces. This complements conventional X-ray absorption by edge enhancement phenomena. Thus, phase contrast imaging has the potential to improve the detection of structures on images by detecting those structures that are invisible with X-ray absorption imaging. Images of a weakly absorbing nylon fibre were recorded in in-line holography geometry using a high resolution low-noise CCD camera at the ESRF in Grenoble. The method was also applied to improve image contrast for images of biological tissues. This paper presents phase contrast microradiographs of vascular tree casts and images of a housefly. These reveal very fine structures, that remain invisible with conventional absorption contrast only.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This Doctoral Thesis entitled Contribution to the analysis, design and assessment of compact antenna test ranges at millimeter wavelengths aims to deepen the knowledge of a particular antenna measurement system: the compact range, operating in the frequency bands of millimeter wavelengths. The thesis has been developed at Radiation Group (GR), an antenna laboratory which belongs to the Signals, Systems and Radiocommunications department (SSR), from Technical University of Madrid (UPM). The Radiation Group owns an extensive experience on antenna measurements, running at present four facilities which operate in different configurations: Gregorian compact antenna test range, spherical near field, planar near field and semianechoic arch system. The research work performed in line with this thesis contributes the knowledge of the first measurement configuration at higher frequencies, beyond the microwaves region where Radiation Group features customer-level performance. To reach this high level purpose, a set of scientific tasks were sequentially carried out. Those are succinctly described in the subsequent paragraphs. A first step dealed with the State of Art review. The study of scientific literature dealed with the analysis of measurement practices in compact antenna test ranges in addition with the particularities of millimeter wavelength technologies. Joint study of both fields of knowledge converged, when this measurement facilities are of interest, in a series of technological challenges which become serious bottlenecks at different stages: analysis, design and assessment. Thirdly after the overview study, focus was set on Electromagnetic analysis algorithms. These formulations allow to approach certain electromagnetic features of interest, such as field distribution phase or stray signal analysis of particular structures when they interact with electromagnetic waves sources. Properly operated, a CATR facility features electromagnetic waves collimation optics which are large, in terms of wavelengths. Accordingly, the electromagnetic analysis tasks introduce an extense number of mathematic unknowns which grow with frequency, following different polynomic order laws depending on the used algorithmia. In particular, the optics configuration which was of our interest consisted on the reflection type serrated edge collimator. The analysis of these devices requires a flexible handling of almost arbitrary scattering geometries, becoming this flexibility the nucleus of the algorithmia’s ability to perform the subsequent design tasks. This thesis’ contribution to this field of knowledge consisted on reaching a formulation which was powerful at the same time when dealing with various analysis geometries and computationally speaking. Two algorithmia were developed. While based on the same principle of hybridization, they reached different order Physics performance at the cost of the computational efficiency. Inter-comparison of their CATR design capabilities was performed, reaching both qualitative as well as quantitative conclusions on their scope. In third place, interest was shifted from analysis - design tasks towards range assessment. Millimetre wavelengths imply strict mechanical tolerances and fine setup adjustment. In addition, the large number of unknowns issue already faced in the analysis stage appears as well in the on chamber field probing stage. Natural decrease of dynamic range available by semiconductor millimeter waves sources requires in addition larger integration times at each probing point. These peculiarities increase exponentially the difficulty of performing assessment processes in CATR facilities beyond microwaves. The bottleneck becomes so tight that it compromises the range characterization beyond a certain limit frequency which typically lies on the lowest segment of millimeter wavelength frequencies. However the value of range assessment moves, on the contrary, towards the highest segment. This thesis contributes this technological scenario developing quiet zone probing techniques which achieves substantial data reduction ratii. Collaterally, it increases the robustness of the results to noise, which is a virtual rise of the setup’s available dynamic range. In fourth place, the environmental sensitivity of millimeter wavelengths issue was approached. It is well known the drifts of electromagnetic experiments due to the dependance of the re sults with respect to the surrounding environment. This feature relegates many industrial practices of microwave frequencies to the experimental stage, at millimeter wavelengths. In particular, evolution of the atmosphere within acceptable conditioning bounds redounds in drift phenomena which completely mask the experimental results. The contribution of this thesis on this aspect consists on modeling electrically the indoor atmosphere existing in a CATR, as a function of environmental variables which affect the range’s performance. A simple model was developed, being able to handle high level phenomena, such as feed - probe phase drift as a function of low level magnitudes easy to be sampled: relative humidity and temperature. With this model, environmental compensation can be performed and chamber conditioning is automatically extended towards higher frequencies. Therefore, the purpose of this thesis is to go further into the knowledge of millimetre wavelengths involving compact antenna test ranges. This knowledge is dosified through the sequential stages of a CATR conception, form early low level electromagnetic analysis towards the assessment of an operative facility, stages for each one of which nowadays bottleneck phenomena exist and seriously compromise the antenna measurement practices at millimeter wavelengths.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La variación en el contenido de humedad (CH) tiene una influencia significativa tanto en las propiedades físico- químicas de la madera, como en sus propiedades electromagnéticas y por tanto afecta a las características de la propagación de las ondas. En concreto, en este trabajo se estudia la capacidad del georradar (GR) empleando una antena de 1.6GHz de frecuencia central para registrar las variaciones que se producen en la velocidad y en la amplitud de las ondas electromagnéticas cuando se propagan en unas viguetas de madera de Pinus pinaster Ait de uso estructural cuyo CH va disminuyendo. Se ha comprobado como cuando el CH descendía la velocidad de propagación y las amplitudes, tanto de la onda directa como de la reflejada aumentaba. Los altos factores de correlación encontrados demuestran que el GR es una técnica capaz de evaluar, de forma no destructiva, el CH de la madera de uso estructural. The moisture content variations in wood have a significant influence in wood?s physicochemical properties, as well as in its electromagnetic properties and to specific effects upon waves? characteristics. In particular, this paper focuses on the analysis of the Ground-penetrating Radar?s (GPR) using an antenna of 1.6 GHz central frequency capacity to register the velocity and the amplitude of the electromagnetic waves? variation during the drying process of Pinus pinaster Ait timber joists. The results showed that when timber MC descended, the propagation velocity and amplitude of both the direct and the reflected wave increased. The high correlation found between the variables studied demonstrates GPR efficiency and the innovative application of this technique as a non-destructive evaluation tool for timber structures, particularly when studying its moisture content.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El proyecto de rehabilitación de una de las naves del complejo fabril de la industria química ?CROS? en Valencia se llevó a cabo con el criterio de mantener, en la medida de lo posible, los elementos estructurales presentes en la nave. Con este objetivo se realizaron una serie de ensayos no destructivos (END) in situ. Estos ensayos permitieron evaluar la calidad de la madera, determinar qué elementos estructurales debían ser sustituidos y comprobar la aptitud de los que iban a ser reutilizados. Los END empleados en este estudio fueron los siguientes: (1) Identificación de la especie por técnicas anatómicas, (2) Clasificación resistente por método visual, (3) Estimación de humedad por la técnica de resistencia eléctrica; (4) Obtención de velocidades de propagación ultrasónicas (5) Resistógrafía y (6) Alteración de la propagación de ondas electromagnéticas por medio de Georradar. Para la calibración de estos END se tomó una muestra de piezas y se hicieron ensayos destructivos bajo condiciones controladas en laboratorio. En el trabajo que aquí se presenta se muestra la metodología empleada durante el proceso de toma de datos, de análisis de resultados y de cruce de la información obtenida a partir de cada uno de los ensayos hasta llegar a un diagnóstico para los elementos analizados. The assessment of structural timber was requested in the rehabilitation project of the Naves of the chemical industry "CROS". The criterion was to maintain as much as possible timber of the structure and to make only partial replacements. In order not to damage the existing structure and to assess the quality of the existing timber, a series of non-destructive testing (NDT) in the entire structure were performed: (1) Identification of the species by anatomical techniques, (2) Strength grading by visual method, (3) Estimation of moisture content by the technique of electrical resistance, (4) Acquisition of ultrasonic propagation velocities (5) Resistography and (6) Record of the propagation of electromagnetic waves by means of Ground-penetrating radar. Following, a sample group was chose to carry out destructive testing in the lab and compare the NDT results with those obtained with the standard UNE-EN408 (modules of strength, stiffness and density). In the present work, the results provided by each of the NDT techniques are detailed and above all, what is more important, the validity of these after they have been contrasted with the destructive standard tests.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The performance of a CATR relies on the planarity of the synthesized test wave, which is generated within a bounded volume for which specifications are drawn. Millimetre-wave facilities deal with the classical limitations of this frequency band, among which two become critical in our analysis: time-extensive acquisition campaigns and impact of environmental variables. Both features become more evident when increasing the frequency of operation. The variation in atmospheric variables, such as humidity, temperature and pressure has an influence over the performance of all the elements of the facility. The instrumentation behavior is influenced both by the warming up process, and the ambience conditions that surround the equipment. On the changes of the atmosphere itself, they affect the electromagnetic wave propagation, given the physical link between the conditions of the atmosphere and its electric properties as an electromagnetic waves propagation medium

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The study of the many types of natural and manmade cavities in different parts of the world is important to the fields of geology, geophysics, engineering, architectures, agriculture, heritages and landscape. Ground-penetrating radar (GPR) is a noninvasive geodetection and geolocation technique suitable for accurately determining buried structures. This technique requires knowing the propagation velocity of electromagnetic waves (EM velocity) in the medium. We propose a method for calibrating the EM velocity using the integration of laser imaging detection and ranging (LIDAR) and GPR techniques using the Global Navigation Satellite System (GNSS) as support for geolocation. Once the EM velocity is known and the GPR profiles have been properly processed and migrated, they will also show the hidden cavities and the old hidden structures from the cellar. In this article, we present a complete study of the joint use of the GPR, LIDAR and GNSS techniques in the characterization of cavities. We apply this methodology to study underground cavities in a group of wine cellars located in Atauta (Soria, Spain). The results serve to identify construction elements that form the cavity and group of cavities or cellars. The described methodology could be applied to other shallow underground structures with surface connection, where LIDAR and GPR profiles could be joined, as, for example, in archaeological cavities, sewerage systems, drainpipes, etc.