991 resultados para Electric networks.
Resumo:
A neural method is presented in this paper to identify the harmonic components of an ac controller. The components are identified by analyzing the single-phase current waveform. The method effectiveness is verified by applying it to an active power filter (APF) model dedicated to the selective harmonic compensation. Simulation results using theoretical and experimental data are presented to validate the proposed approach. © 2008 IEEE.
Resumo:
In this paper a three-phase power flow for electrical distribution systems considering different models of voltage regulators is presented. A voltage regulator (VR) is an equipment that maintains the voltage level in a predefined value in a distribution line in spite of the load variations within its nominal power. Three different types of connections are analyzed: 1) wye-connected regulators, 2) open delta-connected regulators and 3) closed delta-connected regulators. To calculate the power flow, the three-phase backward/forward sweep algorithm is used. The methodology is tested on the IEEE 34 bus distribution system. ©2008 IEEE.
Resumo:
This paper presents a methodology for the placement and sizing evaluation of distributed generation (DG) in electric power systems. The candidate locations for DG placement are identified on the bases of Locational Marginal Prices (LMP's) obtained from an optimal power flow solution. The problem is formulated for two different objectives: social welfare maximization and profit maximization. For each DG unit an optimal placement is identified for each of the objectives.
Resumo:
This paper presents the development and the experimental analysis of a new single-phase hybrid rectifier structure with high power factor (PF) and low harmonic distortion of current (THDI), suitable for application in traction systems of electrical vehicles pulled by electrical motors (trolleybus), which are powered by urban distribution network. This front-end rectifier structure is capable of providing significant improvements in trolleybuses systems and in the urban distribution network costs, and efficiency. The proposed structure is composed by an ordinary single-phase diode rectifier with parallel connection of a switched converter. It is outlined that the switched converter is capable of composing the input line current waveform assuring high power factor (HPF) and low THDI, as well as ordinary front-end converter. However, the power rating of the switched converter is about 34% of the total output power, assuring robustness and reliability. Therefore, the proposed structure was named single-phase HPF hybrid rectifier. A prototype rated at 15kW was developed and analyzed in laboratory. It was found that the input line current harmonic spectrum is in accordance with the harmonic limits imposed by IEC61000-3-4. The principle of operation, the mathematical analysis, the PWM control strategy, and experimental results are also presented in this paper. © 2009 IEEE.
Resumo:
This paper presents the development and experimental analysis of a special input stage converter for a Trolleybus type vehicle allowing its operation in AC (two wires, single-phase) or DC distribution networks. The architecture of proposed input stage converter is composed by five interleaved boost rectifiers operating in discontinuous conduction mode. Furthermore, due to the power lines characteristics, the proposed input power structure can act as AC to DC or as DC to DC converter providing a proper DC output voltage range required to the DC bus. When operation is AC to DC, the converter is capable to provide high power factor with reduced harmonic distortion for the input current, complying with the restrictions imposed by IEC 61000-3-4 standard. Finally, the main experimental results are presented in order to verify the feasibility of the proposed converter, demonstrating the benefits and the possibility for AC feeding system for trolleybus type vehicle. © 2010 IEEE.
Resumo:
Multinodal load forecasting deals with the loads of several interest nodes in an electrical network system, which is also known as bus load forecasting. To perform this demand, it is necessary a technique that is precise, trustable and has a short-time processing. This paper proposes two methodologies based on general regression neural networks for short-term multinodal load forecasting. The first individually forecast the local loads and the second forecast the global load and individually forecast the load participation factors to estimate the local loads. To design the forecasters it wasn't necessary the previous study of the local loads. Tests were made using a New Zealand distribution subsystem and the results obtained are compatible with the ones founded in the specialized literature. © 2011 IEEE.
Resumo:
An important alteration of the equivalent loads profile has been observed in the electrical energy distribution systems, for the last years. Such fact is due to the significant increment of the electronic processors of electric energy that, in general, behave as nonlinear loads, generating harmonic distortions in the currents and voltages along the electric network. The effects of these nonlinear loads, even if they are concentrated in specific sections of the network, are present along the branch circuits, affecting the behavior of the entire electric network. For the evaluation of this phenomenon it is necessary the analysis of the harmonic currents flow and the understanding of the causes and effects of the consequent voltage harmonic distortions. The usual tools for calculation the harmonic flow consider one-line equivalent networks, balanced and symmetrical systems. Therefore, they are not tools appropriate for analysis of the operation and the influence/interaction of mitigation elements. In this context, this work proposes the development of a computational tool for the analysis of the three-phase harmonic propagation using Norton modified models and considering the real nature of unbalanced electric systems operation. © 2011 IEEE.
Resumo:
The need for high reliability and environmental concerns are making the underground networks the most appropriate choice of energy distribution. However, like any other system, underground distribution systems are not free of failures. In this context, this work presents an approach to study underground systems using computational tools by integrating the software PSCAD/EMTDC with artificial neural networks to assist fault location in power distribution systems. Targeted benefits include greater accuracy and reduced repair time. The results presented here shows the feasibility of the proposed approach. © 2012 IEEE.
Resumo:
A multi-agent system with a percolation approach to simulate the driving pattern of Plug-In Electric Vehicle (PEV), especially suited to simulate the PEVs behavior on any distribution systems, is presented. This tool intends to complement information about the driving patterns database on systems where that kind of information is not available. So, this paper aims to provide a framework that is able to work with any kind of technology and load generated of PEVs. The service zone is divided into several sub-zones, each subzone is considered as an independent agent identified with corresponding load level, and their relationships with the neighboring zones are represented as network probabilities. A percolation approach is used to characterize the autonomy of the battery of the PVEs to move through the city. The methodology is tested with data from a mid-size city real distribution system. The result shows the sub-area where the battery of PEVs will need to be recharge and gives the planners of distribution systems the necessary input for a medium to long term network planning in a smart grid environment. © 2012 IEEE.
Resumo:
We present a metaheuristic approach which combines constructive heuristics and local searches based on sampling with path relinking. Its effectiveness is demonstrated by an application to the problem of allocating switches in electrical distribution networks to improve their reliability. Our approach also treats the service restoration problem, which has to be solved as a subproblem, to evaluate the reliability benefit of a given switch allocation proposal. Comparisons with other metaheuristics and with a branch-and-bound procedure evaluate its performance. © 2012 Published by Elsevier Ltd.
Resumo:
This paper presents a mixed integer nonlinear programming multiobjective model for short-term planning of distribution networks that considers in an integrated manner the following planning activities: allocation of capacitor banks; voltage regulators; the cable replacement of branches and feeders. The objective functions considered in the proposed model are: to minimize operational and investment costs and minimize the voltage deviations in the the network buses, subject to a set of technical and operational constraints. A multiobjective genetic algorithm based on a Non-Dominated Sorting Genetic Algorithm (NSGA-II) is proposed to solve this model. The proposed mathematical model and solution methodology is validated testing a medium voltage distribution system with 135 buses. © 2013 Brazilian Society for Automatics - SBA.
Resumo:
This work presents an alternative approach based on neural network method in order to estimate speed of induction motors, using the measurement of primary variables such as voltage and current. Induction motors are very common in many sectors of the industry and assume an important role in the national energy policy. The nowadays methodologies, which are used in diagnosis, condition monitoring and dimensioning of these motors, are based on measure of the speed variable. However, the direct measure of this variable compromises the system control and starting circuit of an electric machinery, reducing its robustness and increasing the implementation costs. Simulation results and experimental data are presented to validate the proposed approach. © 2003-2012 IEEE.
Resumo:
The non-technical loss is not a problem with trivial solution or regional character and its minimization represents the guarantee of investments in product quality and maintenance of power systems, introduced by a competitive environment after the period of privatization in the national scene. In this paper, we show how to improve the training phase of a neural network-based classifier using a recently proposed meta-heuristic technique called Charged System Search, which is based on the interactions between electrically charged particles. The experiments were carried out in the context of non-technical loss in power distribution systems in a dataset obtained from a Brazilian electrical power company, and have demonstrated the robustness of the proposed technique against with several others nature-inspired optimization techniques for training neural networks. Thus, it is possible to improve some applications on Smart Grids. © 2013 IEEE.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)