997 resultados para Early Miocene Flora


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The analysis of planktic foraminiferal assemblages from Site 1090 (ODP Leg 177), located in the central part of the Subantarctic Zone south of South Africa, provided a geochronology of a 330-m-thick sequence spanning the Middle Eocene to Early Pliocene. A sequence of discrete bioevents enables the calibration of the Antarctic Paleogene (AP) Zonation with lower latitude biozonal schemes for the Middle-Late Eocene interval. In spite of the poor recovery of planktic foraminiferal assemblages, a correlation with the lower latitude standard planktic foraminiferal zonations has been attempted for the whole surveyed interval. Identified bioevents have been tentatively calibrated to the geomagnetic polarity time scale following the biochronology of Berggren et al. (1995). Besides planktic foraminiferal bioevents, the disappearance of the benthic foraminifera Nuttallides truempyi has been used to approximate the Middle/Late Eocene boundary. A hiatus of at least 11.7 Myr occurs between V78 and V71 m composite depth extending from the Early Miocene to the latest Miocene-Early Pliocene. Middle Eocene assemblages exhibit a temperate affinity, while the loss of several planktic foraminiferal species by late Middle to early Late Eocene time reflects cooling. During the Late Eocene-Oligocene intense dissolution caused impoverishment of planktic foraminiferal assemblages possibly following the emplacement of cold, corrosive bottom waters. Two warming peaks are, however, observed: the late Middle Eocene is marked by the invasion of the warmer water Acarinina spinuloinflata and Hantkenina alabamensis at 40.5 Ma, while the middle Late Eocene experienced the immigration of some globigerinathekids including Globigerinatheka luterbacheri and Globigerinatheka cf. semiinvoluta at 34.3 Ma. A more continuous record is observed for the Early Miocene and the Late Miocene-Early Pliocene where planktic foraminiferal assemblages show a distinct affinity with southern mid- to high-latitude faunas.

Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have integrated Oligocene to lower upper Miocene planktonic foraminifer biostratigraphy with benthic foraminifer (Cibicidoides spp.) stable isotope records for two sites drilled on opposite sides of the Sierra Leone Rise in the eastern equatorial Atlantic Ocean. Deep Sea Drilling Project Site 366 (2853 m present water depth; 2200-2800 m paleodepth) recovered an Oligocene to upper Miocene record with a minor unconformity in the "middle" Oligocene and a condensed middle Miocene section. Ocean Drilling Program Site 667 (3529 m present depth; 3000-3500 m paleodepth) recovered an apparently continuous "middle" Oligocene to lower middle Miocene record and a similar condensed middle Miocene section. The Oligocene to lower Miocene sections were deposited at similar sedimentation rates (~11-16 m/m.y.). Stable isotope stratigraphy proved to be useful in establishing intra- and interbasinal correlations. In addition to the well-known earliest Oligocene and middle Miocene S180 increases, a distinct d18O increase occurred near the Oligocene/Miocene boundary. Carbon isotope variations provide similar potential for improving correlations; for example, a d13C increase occurred near the Oligocene/Miocene boundary in concert with increased d18O values. There was little d13C difference between the western Atlantic and eastern Atlantic basins during the late Oligocene and most of the middle Miocene; in contrast, eastern basin d13C values were slightly lower than those in the western basins during the earliest Oligocene (about 35-33 Ma) and early Miocene (about 22-18 Ma).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A diverse assemblage of marine palynomorphs was recovered from the Oligocene - Miocene section of CRP-2/2A. Most of the assemblage is composed of previously unrecognised species. Three distinct groups of marine palynomorph were recognised: (1) prasinophytes, mainly Cymatiosphaera, (2) acritarchs, mainly Leiosphaeridia and Sigmopollis although Leiofusa is an important component of the bottom half of the hole, and (3) dinoflagellate cysts. About 27 species of in situ dinoflagellate cysts were recorded, of which seven apparently undescribed species of Lejeunecysta form a prominent component. Reworked specimens of several species of the Paleogene Transantarctic Flora occur in CRP-2/2A sediments. Several abundance peaks of reworked taxa from the Transantarctic Flora are recorded. Three marine palynomorph zones were recognised (MP3, MP2, MP1), considered to be early Oligocene, late Oligocene, and late Oligocene/early Miocene in age respectively. Samples from the Quaternary and Pliocene part of CRP-2/2A were also examined. These proved either barren or yielded very sparse low diversity floras.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Continuous magnetostratigraphy and biostratigraphy made it possible to construct a detailed late Neogene record of 87Sr/86Sr isotopic ratios of ocean water, as measured in the tests of planktonic foraminifers. Sediments recovered during Leg 117, in the western Arabian Sea, provide a continuous, high resolution sedimentary record from the early Miocene to present. The late Miocene to Recent is marked by rapidly increasing 87Sr/86Sr ratios in seawater, which results in a chronostratigraphical resolution varying from 0.2 Ma to 1.5 Ma. The 87Sr/86Sr seawater curve has a stepwise character similar to the one determined by DePaolo on Site 590B, in the Tasman Sea, and to the one determined by McKenzie on Site 653A, in the Mediterranean, confirming its use as a chronostratigraphic tool for this time span. Periods of rapid increase in the 87Sr/86Sr isotopic ratio of seawater are correlated with important changes in tectonic and climatic conditions. Experiments showed that bulk carbonate sediment samples have differing 87Sr/86Sr ratios from those of planktonic and benthic foraminifers from the same depth.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Imprint varies: bd. I, Zürich. F. Schulthess.--bd. II, Winterthur, Wurster & comp.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: The thin-spined porcupine, also known as the bristle-spined rat, Chaetomys subspinosus (Olfers, 1818), the only member of its genus, figures among Brazilian endangered species. In addition to being threatened, it is poorly known, and even its taxonomic status at the family level has long been controversial. The genus Chaetomys was originally regarded as a porcupine in the family Erethizontidae, but some authors classified it as a spiny-rat in the family Echimyidae. Although the dispute seems to be settled in favor of the erethizontid advocates, further discussion of its affinities should be based on a phylogenetic framework. In the present study, we used nucleotide-sequence data from the complete mitochondrial cytochrome b gene and karyotypic information to address this issue. Our molecular analyses included one individual of Chaetomys subspinosus from the state of Bahia in northeastern Brazil, and other hystricognaths. Results: All topologies recovered in our molecular phylogenetic analyses strongly supported Chaetomys subspinosus as a sister clade of the erethizontids. Cytogenetically, Chaetomys subspinosus showed 2n = 52 and FN = 76. Although the sexual pair could not be identified, we assumed that the X chromosome is biarmed. The karyotype included 13 large to medium metacentric and submetacentric chromosome pairs, one small subtelocentric pair, and 12 small acrocentric pairs. The subtelocentric pair 14 had a terminal secondary constriction in the short arm, corresponding to the nucleolar organizer region (Ag-NOR), similar to the erethizontid Sphiggurus villosus, 2n = 42 and FN = 76, and different from the echimyids, in which the secondary constriction is interstitial. Conclusion: Both molecular phylogenies and karyotypical evidence indicated that Chaetomys is closely related to the Erethizontidae rather than to the Echimyidae, although in a basal position relative to the rest of the Erethizontidae. The high levels of molecular and morphological divergence suggest that Chaetomys belongs to an early radiation of the Erethizontidae that may have occurred in the Early Miocene, and should be assigned to its own subfamily, the Chaetomyinae.