972 resultados para EMITTING DIODE


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The design and synthesis is reported of 7-(9H-carbazol-9-yl)-4-methylcoumarin (Cz-Cm), comprising a carbazole donor moiety and a 4-methylcoumarin acceptor unit, for use in a blue organic light-emitting diode. A detailed solid state, theoretical and spectroscopic study was performed to understand the structure-property relationships. The material exhibits deep-blue emission and high photoluminescence quantum yield both in solution and in a doped matrix. A deep-blue electroluminescence emission at 430nm, a maximum brightness of 292cdm(-2) and an external quantum efficiency of 0.4% was achieved with a device configured as follows: ITO/NPD (30nm)/TCTA (20nm)/CzSi(10nm)/10wt% Cz-Cm:DPEPO (10nm)/TPBI (30nm)/LiF (1nm)/Al ITO=indium tin oxide, NPD=N,N-di(1-naphthyl)-N,N-diphenyl-(1,1-biphenyl)-4,4-diamine, TCTA=tris(4-carbazoyl-9-ylphenyl)amine, CzSi=9-(4-tert-butylphenyl)-3,6-bis(triphenylsilyl)-9H-carbazole, DPEPO=bis2-(diphenylphosphino)phenyl]ether oxide, TPBI=1,3,5-tris(N-phenylbenzimidazol-2-yl)benzene].

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nanostructured ZnO materials are of great significance for their potential applications in photoelectronic devices, light-emitting displays, catalysis and gas sensors. In this paper, we report a new method to produce large area periodical bowl-like micropatterns of single crystal ZnO through aqueous-phase epitaxial growth on a ZnO single crystal substrate. A self-assembled monolayer of polystyrene microspheres was used as a template to confine the epitaxial growth of single crystal ZnO from the substrate, while the growth morphology was well controlled by citrate anions. Moreover, it was found that the self-assembled monolayer of colloidal spheres plays an important role in reduction of the defect density in the epitaxial ZnO layer. Though the mechanism is still open for further investigation, the present result indicates a new route to suppress the dislocations in the fabrication of single crystal ZnO film. A predicable application of this new method is for the fabrication of two-dimensional photonic crystal structures on light emitting diode surfaces.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Optical microscopy is an essential tool in biological science and one of the gold standards for medical examinations. Miniaturization of microscopes can be a crucial stepping stone towards realizing compact, cost-effective and portable platforms for biomedical research and healthcare. This thesis reports on implementations of bright-field and fluorescence chip-scale microscopes for a variety of biological imaging applications. The term “chip-scale microscopy” refers to lensless imaging techniques realized in the form of mass-producible semiconductor devices, which transforms the fundamental design of optical microscopes.

Our strategy for chip-scale microscopy involves utilization of low-cost Complementary metal Oxide Semiconductor (CMOS) image sensors, computational image processing and micro-fabricated structural components. First, the sub-pixel resolving optofluidic microscope (SROFM), will be presented, which combines microfluidics and pixel super-resolution image reconstruction to perform high-throughput imaging of fluidic samples, such as blood cells. We discuss design parameters and construction of the device, as well as the resulting images and the resolution of the device, which was 0.66 µm at the highest acuity. The potential applications of SROFM for clinical diagnosis of malaria in the resource-limited settings is discussed.

Next, the implementations of ePetri, a self-imaging Petri dish platform with microscopy resolution, are presented. Here, we simply place the sample of interest on the surface of the image sensor and capture the direct shadow images under the illumination. By taking advantage of the inherent motion of the microorganisms, we achieve high resolution (~1 µm) imaging and long term culture of motile microorganisms over ultra large field-of-view (5.7 mm × 4.4 mm) in a specialized ePetri platform. We apply the pixel super-resolution reconstruction to a set of low-resolution shadow images of the microorganisms as they move across the sensing area of an image sensor chip and render an improved resolution image. We perform longitudinal study of Euglena gracilis cultured in an ePetri platform and image based analysis on the motion and morphology of the cells. The ePetri device for imaging non-motile cells are also demonstrated, by using the sweeping illumination of a light emitting diode (LED) matrix for pixel super-resolution reconstruction of sub-pixel shifted shadow images. Using this prototype device, we demonstrate the detection of waterborne parasites for the effective diagnosis of enteric parasite infection in resource-limited settings.

Then, we demonstrate the adaptation of a smartphone’s camera to function as a compact lensless microscope, which uses ambient illumination as its light source and does not require the incorporation of a dedicated light source. The method is also based on the image reconstruction with sweeping illumination technique, where the sequence of images are captured while the user is manually tilting the device around any ambient light source, such as the sun or a lamp. Image acquisition and reconstruction is performed on the device using a custom-built android application, constructing a stand-alone imaging device for field applications. We discuss the construction of the device using a commercial smartphone and demonstrate the imaging capabilities of our system.

Finally, we report on the implementation of fluorescence chip-scale microscope, based on a silo-filter structure fabricated on the pixel array of a CMOS image sensor. The extruded pixel design with metal walls between neighboring pixels successfully guides fluorescence emission through the thick absorptive filter to the photodiode layer of a pixel. Our silo-filter CMOS image sensor prototype achieves 13-µm resolution for fluorescence imaging over a wide field-of-view (4.8 mm × 4.4 mm). Here, we demonstrate bright-field and fluorescence longitudinal imaging of living cells in a compact, low-cost configuration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

差分吸收法是进行瓦斯远距离监测的重要方法,根据瓦斯在近红外波段的吸收特性,报道了一种新型的远距离光纤瓦斯传感系统。采用1.3μm超辐射发光二极管为光源,利用光纤布拉格光栅(FBG)优良的窄带滤波特性实现了对瓦斯的差分吸收测量。和传统的干涉滤光片相比,光纤光栅滤波器插入损耗低、制备简单。系统具有全光纤化、结构简单、工作距离远、稳定性好的特点。工作距离10km,测量灵敏度为0.1%,是瓦斯爆炸极限的2%。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we report on the multicolor luminescence in oxygen-deficient Tb3+-doped calcium aluminogermanate glasses. A simple method was proposed to control oxygen-deficient defects in glasses by adding metal Al instead of the corresponding oxide (Al2O3), resulting in efficient blue and red emissions from Tb3+-undoped glasses with 300 and 380 nm excitation wavelengths, respectively. Moreover, in Tb3+-doped oxygen-deficient glasses, bright three-color (sky-blue, green or yellow, and red) luminescence was observed with 300, 380, and 395 nm excitation wavelengths, respectively. These glasses are useful for the fabrication of white light-emitting diode (LED) lighting.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Amorphous silicon thin-film transistors and pixel driver circuits for organic light-emitting diode displays have been fabricated on plastic substrates. Pixel circuits demonstrate sufficient current delivery and long-term stable operation. © 2005 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two near-ultraviolet (UV) sensors based on solution-grown zinc oxide (ZnO) nanowires (NWs) which are only sensitive to photo-excitation at or below 400 nm wavelength have been fabricated and characterized. Both devices keep all processing steps, including nanowire growth, under 100 °C for compatibility with a wide variety of substrates. The first device type uses a single optical lithography step process to allow simultaneous in situ horizontal NW growth from solution and creation of symmetric ohmic contacts to the nanowires. The second device type uses a two-mask optical lithography process to create asymmetric ohmic and Schottky contacts. For the symmetric ohmic contacts, at a voltage bias of 1 V across the device, we observed a 29-fold increase in current in comparison to dark current when the NWs were photo-excited by a 400 nm light-emitting diode (LED) at 0.15 mW cm(-2) with a relaxation time constant (τ) ranging from 50 to 555 s. For the asymmetric ohmic and Schottky contacts under 400 nm excitation, τ is measured between 0.5 and 1.4 s over varying time internals, which is ~2 orders of magnitude faster than the devices using symmetric ohmic contacts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of large size Si substrates for epitaxy of nitride light emitting diode (LED) structures has attracted great interest because Si wafers are readily available in large diameter at low cost. In addition, such wafers are compatible with existing processing lines for the 6-inch and larger wafer sizes commonly used in the electronics industry. With the development of various methods to avoid wafer cracking and reduce the defect density, the performance of GaN-based LED and electronic devices has been greatly improved. In this paper, we review our methods of growing crack-free InGaN-GaN multiple quantum well (MQW) LED structures of high crystalline quality on Si(111) substrates. The performance of processed LED devices and its dependence on the threading dislocation density were studied. Full wafer-level LED processing using a conventional 6-inch III-V processing line is also presented, demonstrating the great advantage of using large-size Si substrates for mass production of GaN LED devices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A spin-injection/-detection device has been fabricated based on the multiple quantum well light emitting diode (LED) structure. It is found that only a broad electroluminescence (EL) peak of a full width at half maximum of 8.6 nm appears at the wavelength of 801 nm in EL spectra with a circular luminescence polarization degree of 18%, despite PL spectra always show three well resolved peaks. The kinetic energy gained by injected electrons and holes in their drift along opposite directions broadens the EL peak, and makes three EL peaks converge together. The same process also destroys the injected spin polarization of electrons mainly dominated by the Bir-Aronov-Pikus spin relaxing mechanism.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present work, an infrared light-emitting diode is used to photodope molecular-beam-epitaxy-grown Si: Al0.3Ga0.7As, a well-known persistent photoconductor, to vary the effective electron concentration of samples in situ. Using this technique, we examine the transport properties of two samples containing different nominal doping concentrations of Si [1 x 10(19) cm(-3) for sample 1 (S1) and 9 x 10(17) cm(-3) for sample 2 (S2)] and vary the effective electron density between 10(14) and 10(18) cm(-3). The metal-insulator transition for S1 is found to occur at a critical carrier concentration of 5.7 x 10(16) cm(-3) at 350 mK. The mobilities in both samples are found to be limited by ionized impurity scattering in the temperature range probed, and are adequately described by the Brooks-Herring screening theory for higher carrier densities. The shape of the band tail of the density of states in Al0.3Ga0.7As is found electrically through transport measurements. It is determined to have a power-law dependence, with an exponent of -1.25 for S1 and -1.38 for S2.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sapphire substrates patterned by a selective chemical wet and an inductively coupled plasma (ICP) etching technique was proposed to improve the performance of GaN-based light-emitting diodes (LEDs). GaN-based LEDs were fabricated on sapphire substrates through metal organic chemical vapor deposition (MOCVD). The LEDs fabricated on the patterned substrates exhibit improved device performance compared with the conventional LED fabricated on planar substrates when growth and device fabricating conditions were the same. The light output powers of the LEDs fabricated on wet-patterned and ICP-patterned substrates were about 37% and 17% higher than that of LEDs on planar substrates at an injection current of 20 mA, respectively. The enhancement is attributable to the combination of the improvement of GaN-based epilayers quality and the improvement of the light extraction efficiency. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A Ge/Si heterojunction light emitting diode with a p(+)-Ge/i-Ge/N+-Si structure was fabricated using the ultrahigh vacuum chemical vapor deposition technology on N+-Si substrate. The device had a good I-V rectifying behavior. Under forward bias voltage ranging from 1.1 to 2.5 V, electroluminescence around 1565 nm was observed at room temperature. The mechanism of the light emission is discussed by the radiative lifetime and the scattering rate. The results indicate that germanium is a potential candidate for silicon-based light source material. (C) 2009 American Institute of Physics. [DOI 10.1063/1.3216577]

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ultraviolet photo-lithography is employed to introduce two-dimensional (2D) photonic crystal (PC) structure on the top surface of GaN-based light emitting diode (LED). PC patterns are transferred to 460-nm-thick transparent indium tin oxide (ITO) electrode by inductively coupled plasma (ICP) etching. Light intensity of PC-LED can be enhanced by 38% comparing with the one without PC structure. Rigorous coupled wave analysis method is performed to calculate the light transmission spectrum of PC slab. Simulation results indicate that total internal reflect angle which modulated by PC structure has been increased by 7 degrees, which means that the light extraction efficiency is enhanced outstandingly.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Wafers with normal light-emitting diode structure were grown by metal organic chemical vapor deposition system. The pressure and temperature were varied during growth of buffer layer in order to grow different types of epilayers. The cathodoluminescence results show that the interface distortion of quantum well plays an important role in radiant efficiency. The electroluminescence detections indicate that the dislocations also influence the external quantum efficiency by lowering the electron injection efficiency. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We obtained the high mobility Of mu(2K) = 1.78 x 10(6) cm(2)/V . s in Si-doped GaAs/AlGaAs two-dimensional electron gas (2DEG) structures. After the sample was illuminated by a light-emitting diode in magnetic fields up to 6 T at T = 2K, we did observe the persistent photoconductivity effect and the electron density increased obviously. The electronic properties of 2DEG have been studied by Quantum-Hall-effect and Shubnikov-de Haas (SdH) oscillation measurements. We found that the electron concentrations of two subbands increase simultaneity with the increasing total electron concentration, and the electron mobility also increases obviously after being illuminated. At the same time, we also found that the electronic quantum lifetime becomes shorter, and a theoretical explunation is given through the widths of integral quantum Hall plateaus.