995 resultados para ECHO DOUBLE-RESONANCE


Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To implement and characterize a fluorine-19 ((19)F) magnetic resonance imaging (MRI) technique and to test the hypothesis that the (19)F MRI signal in steady state after intravenous injection of a perfluoro-15-crown-5 ether (PCE) emulsion may be exploited for angiography in a pre-clinical in vivo animal study. MATERIALS AND METHODS: In vitro at 9.4T, the detection limit of the PCE emulsion at a scan time of 10 min/slice was determined, after which the T(1) and T(2) of PCE in venous blood were measured. Permission from the local animal use committee was obtained for all animal experiments. 12 µl/g of PCE emulsion was intravenously injected in 11 mice. Gradient echo (1)H and (19)F images were obtained at identical anatomical levels. Signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were determined for 33 vessels in both the (19)F and (1)H images, which was followed by vessel tracking to determine the vessel conspicuity for both modalities. RESULTS: In vitro, the detection limit was ∼400 µM, while the (19)F T(1) and T(2) were 1350±40 and 25±2 ms. The (19)F MR angiograms selectively visualized the vasculature (and the liver parenchyma over time) while precisely coregistering with the (1)H images. Due to the lower SNR of (19)F compared to (1)H (17±8 vs. 83±49, p<0.001), the (19)F CNR was also lower at 15±8 vs. 52±35 (p<0.001). Vessel tracking demonstrated a significantly higher vessel sharpness in the (19)F images (66±11 vs. 56±12, p = 0.002). CONCLUSION: (19)F magnetic resonance angiography of intravenously administered perfluorocarbon emulsions is feasible for a selective and exclusive visualization of the vasculature in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantification of short-echo time proton magnetic resonance spectroscopy results in >18 metabolite concentrations (neurochemical profile). Their quantification accuracy depends on the assessment of the contribution of macromolecule (MM) resonances, previously experimentally achieved by exploiting the several fold difference in T(1). To minimize effects of heterogeneities in metabolites T(1), the aim of the study was to assess MM signal contributions by combining inversion recovery (IR) and diffusion-weighted proton spectroscopy at high-magnetic field (14.1 T) and short echo time (= 8 msec) in the rat brain. IR combined with diffusion weighting experiments (with δ/Δ = 1.5/200 msec and b-value = 11.8 msec/μm(2)) showed that the metabolite nulled spectrum (inversion time = 740 msec) was affected by residuals attributed to creatine, inositol, taurine, choline, N-acetylaspartate as well as glutamine and glutamate. While the metabolite residuals were significantly attenuated by 50%, the MM signals were almost not affected (< 8%). The combination of metabolite-nulled IR spectra with diffusion weighting allows a specific characterization of MM resonances with minimal metabolite signal contributions and is expected to lead to a more precise quantification of the neurochemical profile.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Transient balanced steady-state free-precession (bSSFP) has shown substantial promise for noninvasive assessment of coronary arteries but its utilization at 3.0 T and above has been hampered by susceptibility to field inhomogeneities that degrade image quality. The purpose of this work was to refine, implement, and test a robust, practical single-breathhold bSSFP coronary MRA sequence at 3.0 T and to test the reproducibility of the technique. METHODS: A 3D, volume-targeted, high-resolution bSSFP sequence was implemented. Localized image-based shimming was performed to minimize inhomogeneities of both the static magnetic field and the radio frequency excitation field. Fifteen healthy volunteers and three patients with coronary artery disease underwent examination with the bSSFP sequence (scan time = 20.5 ± 2.0 seconds), and acquisitions were repeated in nine subjects. The images were quantitatively analyzed using a semi-automated software tool, and the repeatability and reproducibility of measurements were determined using regression analysis and intra-class correlation coefficient (ICC), in a blinded manner. RESULTS: The 3D bSSFP sequence provided uniform, high-quality depiction of coronary arteries (n = 20). The average visible vessel length of 100.5 ± 6.3 mm and sharpness of 55 ± 2% compared favorably with earlier reported navigator-gated bSSFP and gradient echo sequences at 3.0 T. Length measurements demonstrated a highly statistically significant degree of inter-observer (r = 0.994, ICC = 0.993), intra-observer (r = 0.894, ICC = 0.896), and inter-scan concordance (r = 0.980, ICC = 0.974). Furthermore, ICC values demonstrated excellent intra-observer, inter-observer, and inter-scan agreement for vessel diameter measurements (ICC = 0.987, 0.976, and 0.961, respectively), and vessel sharpness values (ICC = 0.989, 0.938, and 0.904, respectively). CONCLUSIONS: The 3D bSSFP acquisition, using a state-of-the-art MR scanner equipped with recently available technologies such as multi-transmit, 32-channel cardiac coil, and localized B0 and B1+ shimming, allows accelerated and reproducible multi-segment assessment of the major coronary arteries at 3.0 T in a single breathhold. This rapid sequence may be especially useful for functional imaging of the coronaries where the acquisition time is limited by the stress duration and in cases where low navigator-gating efficiency prohibits acquisition of a free breathing scan in a reasonable time period.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to evaluate a free-breathing three-dimensional (3D) dual inversion-recovery (DIR) segmented k-space gradient-echo (turbo field echo [TFE]) imaging sequence at 3T for the quantification of aortic vessel wall dimensions. The effect of respiratory motion suppression on image quality was tested. Furthermore, the reproducibility of the aortic vessel wall measurements was investigated. Seven healthy subjects underwent 3D DIR TFE imaging of the aortic vessel wall with and without respiratory navigator. Subsequently, this sequence with respiratory navigator was performed twice in 10 healthy subjects to test its reproducibility. The signal-to-noise (SNR), contrast-to-noise ratio (CNR), vessel wall sharpness, and vessel wall volume (VWV) were assessed. Data were compared using the paired t-test, and the reproducibility of VWV measurements was evaluated using intraclass correlation coefficients (ICCs). SNR, CNR, and vessel wall sharpness were superior in scans performed with respiratory navigator compared to scans performed without. The ICCs concerning intraobserver, interobserver, and interscan reproducibility were excellent (0.99, 0.94, and 0.95, respectively). In conclusion, respiratory motion suppression substantially improves image quality of 3D DIR TFE imaging of the aortic vessel wall at 3T. Furthermore, this optimized technique with respiratory motion suppression enables assessment of aortic vessel wall dimensions with high reproducibility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To develop a breathhold method for black-blood viability imaging of the heart that may facilitate identifying the endocardial border. MATERIALS AND METHODS: Three stimulated-echo acquisition mode (STEAM) images were obtained almost simultaneously during the same acquisition using three different demodulation values. Two of the three images were used to construct a black-blood image of the heart. The third image was a T(1)-weighted viability image that enabled detection of hyperintense infarcted myocardium after contrast agent administration. The three STEAM images were combined into one composite black-blood viability image of the heart. The composite STEAM images were compared to conventional inversion-recovery (IR) delayed hyperenhanced (DHE) images in nine human subjects studied on a 3T MRI scanner. RESULTS: STEAM images showed black-blood characteristics and a significant improvement in the blood-infarct signal-difference to noise ratio (SDNR) when compared to the IR-DHE images (34 +/- 4.1 vs. 10 +/- 2.9, mean +/- standard deviation (SD), P < 0.002). There was sufficient myocardium-infarct SDNR in the STEAM images to accurately delineate infarcted regions. The extracted infarcts demonstrated good agreement with the IR-DHE images. CONCLUSION: The STEAM black-blood property allows for better delineation of the blood-infarct border, which would enhance the fast and accurate measurement of infarct size.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Attempts to use a stimulated echo acquisition mode (STEAM) in cardiac imaging are impeded by imaging artifacts that result in signal attenuation and nulling of the cardiac tissue. In this work, we present a method to reduce this artifact by acquiring two sets of stimulated echo images with two different demodulations. The resulting two images are combined to recover the signal loss and weighted to compensate for possible deformation-dependent intensity variation. Numerical simulations were used to validate the theory. Also, the proposed correction method was applied to in vivo imaging of normal volunteers (n = 6) and animal models with induced infarction (n = 3). The results show the ability of the method to recover the lost myocardial signal and generate artifact-free black-blood cardiac images.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A cardiac-triggered free-breathing three-dimensional balanced fast field-echo projection magnetic resonance (MR) angiographic sequence with a two-dimensional pencil-beam aortic labeling pulse was developed for the renal arteries. For data acquisition during free breathing in eight healthy adults and seven consecutive patients with renal artery disease, real-time navigator technology was implemented. This technique allows high-spatial-resolution and high-contrast renal MR angiography and visualization of renal artery stenosis without exogenous contrast agent or breath hold. Initial promising results warrant larger clinical studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To improve the tag persistence throughout the whole cardiac cycle by providing a constant tag-contrast throughout all the cardiac phases when using balanced steady-state free precession (bSSFP) imaging. MATERIALS AND METHODS: The flip angles of the imaging radiofrequency pulses were optimized to compensate for the tagging contrast-to-noise ratio (Tag-CNR) fading at later cardiac phases in bSSFP imaging. Complementary spatial modulation of magnetization (CSPAMM) tagging was implemented to improve the Tag-CNR. Numerical simulations were performed to examine the behavior of the Tag-CNR with the proposed method, and to compare the resulting Tag-CNR with that obtained from the more commonly used spoiled gradient echo (SPGR) imaging. A gel phantom, as well as five healthy human volunteers, were scanned on a 1.5T scanner using bSSFP imaging with and without the proposed technique. The phantom was also scanned with SPGR imaging. RESULTS: With the proposed technique, the Tag-CNR remained almost constant during the whole cardiac cycle. Using bSSFP imaging, the Tag-CNR was about double that of SPGR. CONCLUSION: The tag persistence was significantly improved when the proposed method was applied, with better Tag-CNR during the diastolic cardiac phase. The improved Tag-CNR will support automated tagging analysis and quantification methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: In patients with Kawasaki disease, serial evaluation of the distribution and size of coronary artery aneurysms (CAA) is necessary for risk stratification and therapeutic management. Although transthoracic echocardiography is often sufficient for this purpose initially, visualization of the coronary arteries becomes progressively more difficult as children grow. We sought to prospectively compare coronary magnetic resonance angiography (MRA) and x-ray coronary angiography findings in patients with CAA caused by Kawasaki disease. METHODS AND RESULTS: Six subjects (age 10 to 25 years) with known CAA from Kawasaki disease underwent coronary MRA using a free-breathing T2-prepared 3D bright blood segmented k-space gradient echo sequence with navigator gating and tracking. All patients underwent x-ray coronary angiography within a median of 75 days (range, 1 to 359 days) of coronary MRA. There was complete agreement between MRA and x-ray angiography in the detection of CAA (n=11), coronary artery stenoses (n=2), and coronary occlusions (n=2). Excellent agreement was found between the 2 techniques for detection of CAA maximal diameter (mean difference=0.4 +/- 0.6 mm) and length (mean difference=1.4 +/- 1.6 mm). The 2 methods showed very similar results for proximal coronary artery diameter (mean difference=0.2 +/- 0.5 mm) and CAA distance from the ostia (mean difference=0.1 +/- 1.5 mm). CONCLUSION: Free-breathing 3D coronary MRA accurately defines CAA in patients with Kawasaki disease. This technique may provide a non-invasive alternative when transthoracic echocardiography image quality is insufficient, thereby reducing the need for serial x-ray coronary angiography in this patient group.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The authors compared radial steady-state free precession (SSFP) coronary magnetic resonance (MR) angiography, cartesian k-space sampling SSFP coronary MR angiography, and gradient-echo coronary MR angiography in 16 healthy adults and four pilot study patients. Standard gradient-echo MR imaging with a T2 preparatory pulse and cartesian k-space sampling was the reference technique. Image quality was compared by using subjective motion artifact level and objective contrast-to-noise ratio and vessel sharpness. Radial SSFP, compared with cartesian SSFP and gradient-echo MR angiography, resulted in reduced motion artifacts and superior vessel sharpness. Cartesian SSFP resulted in increased motion artifacts (P <.05). Contrast-to-noise ratio with radial SSFP was lower than that with cartesian SSFP and similar to that with the reference technique. Radial SSFP coronary MR angiography appears preferable because of improved definition of vessel borders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECT: To determine whether glycine can be measured at 7 T in human brain with (1)H magnetic resonance spectroscopy (MRS). MATERIALS AND METHODS: The glycine singlet is overlapped by the larger signal of myo-inositol. Density matrix simulations were performed to determine the TE at which the myo-inositol signal was reduced the most, following a single spin-echo excitation. (1)H MRS was performed on an actively shielded 7 T scanner, in five healthy volunteers. RESULTS: At the TE of 30 ms, the myo-inositol signal intensity was substantially reduced. Quantification using LCModel yielded a glycine-to-creatine ratio of 0.14 +/- 0.01, with a Cramer-Rao lower bound (CRLB) of 7 +/- 1%. Furthermore, quantification of metabolites other than glycine was possible as well, with a CRLB mostly below 10%. CONCLUSION: It is possible to detect glycine at 7 T in human brain, at the short TE of 30 ms with a single spin-echo excitation scheme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: Atherosclerosis results in a considerable medical and socioeconomic impact on society. We sought to evaluate novel magnetic resonance imaging (MRI) angiography and vessel wall sequences to visualize and quantify different morphologic stages of atherosclerosis in a Watanabe hereditary hyperlipidemic (WHHL) rabbit model. MATERIAL AND METHODS: Aortic 3D steady-state free precession angiography and subrenal aortic 3D black-blood fast spin-echo vessel wall imaging pre- and post-Gadolinium (Gd) was performed in 14 WHHL rabbits (3 normal, 6 high-cholesterol diet, and 5 high-cholesterol diet plus endothelial denudation) on a commercial 1.5 T MR system. Angiographic lumen diameter, vessel wall thickness, signal-/contrast-to-noise analysis, total vessel area, lumen area, and vessel wall area were analyzed semiautomatically. RESULTS: Pre-Gd, both lumen and wall dimensions (total vessel area, lumen area, vessel wall area) of group 2 + 3 were significantly increased when compared with those of group 1 (all P < 0.01). Group 3 animals had significantly thicker vessel walls than groups 1 and 2 (P < 0.01), whereas angiographic lumen diameter was comparable among all groups. Post-Gd, only diseased animals of groups 2 + 3 showed a significant (>100%) signal-to-noise ratio and contrast-to-noise increase. CONCLUSIONS: A combination of novel 3D magnetic resonance angiography and high-resolution 3D vessel wall MRI enabled quantitative characterization of various atherosclerotic stages including positive arterial remodeling and Gd uptake in a WHHL rabbit model using a commercially available 1.5 T MRI system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diffusion magnetic resonance studies of the brain are typically performed using volume coils. Although in human brain this leads to a near optimal filling factor, studies of rodent brain must contend with the fact that only a fraction of the head volume can be ascribed to the brain. The use of surface coil as transceiver increases Signal-to-Noise Ratio (SNR), reduces radiofrequency power requirements and opens the possibility of parallel transmit schemes, likely to allow efficient acquisition schemes, of critical importance for reducing the long scan times implicated in diffusion tensor imaging. This study demonstrates the implementation of a semiadiabatic echo planar imaging sequence (echo time=40 ms, four interleaves) at 14.1T using a quadrature surface coil as transceiver. It resulted in artifact free images with excellent SNR throughout the brain. Diffusion tensor derived parameters obtained within the rat brain were in excellent agreement with reported values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite obvious improvements in spectral resolution at high magnetic field, the detection of 13C labeling by 1H-[13C] NMR spectroscopy remains hampered by spectral overlap, such as in the spectral region of 1H resonances bound to C3 of glutamate (Glu) and glutamine (Gln), and C6 of N-acetylaspartate (NAA). The aim of this study was to develop, implement, and apply a novel 1H-[13C] NMR spectroscopic editing scheme, dubbed "selective Resonance suppression by Adiabatic Carbon Editing and Decoupling single-voxel STimulated Echo Acquisition Mode" (RACED-STEAM). The sequence is based on the application of two asymmetric narrow-transition-band adiabatic RF inversion pulses at the resonance frequency of the 13C coupled to the protons that need to be suppressed during the mixing time (TM) period, alternating the inversion band downfield and upfield from the 13C resonance on odd and even scans, respectively, thus suppressing the detection of 1H resonances bound to 13C within the transition band of the inversion pulse. The results demonstrate the efficient suppression of 1H resonances bound to C3 of Glu and Gln, and C4 of Glu, which allows the 1H resonances bound to C6 of NAA and C4 of Gln to be revealed. The measured time course of the resolved labeling into NAA C6 with the new scheme was consistent with the slow turnover of NAA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To examine the reproducibility of carotid artery dimension measurements using 3T MRI. MATERIALS AND METHODS: Ten healthy volunteers underwent three scans on two occasions for assessment of total vessel wall area (TVWA), total luminal area (TLA), and minimum (MinT) and maximum (MaxT) vessel wall thickness. A double inversion-recovery (IR) fast gradient-echo (FGRE) sequence was used on a commercial 3T system. During the first visit the subjects were scanned twice. The third scan was performed at least four days later. One observer traced all scans, and a second observer retraced the first scan series. RESULTS: For TVWA an interclass correlation (ICC) of 0.994 was calculated with all three scans taken into account. The interobserver ICC was 0.984. The agreement between the scans for TLA showed an ICC of 0.982 with an interobserver ICC of 0.998. For MinT and MaxT an ICC of 0.843 and 0.935 were calculated, with interobserver ICCs of 0.860 and 0.726, respectively. CONCLUSION: With the use of a commercial 3T MR system, TVWA, TLA, and wall thickness measurements of the carotid artery can be assessed with good reproducibility.