981 resultados para Dynamic programming (DP)
Resumo:
Aquest treball de tesis doctoral tracta de la Optimització de la fase d'engreix. L'objectiu és determinar les condicions d'enviament a sacrifici d'un lot d'animals des d'un punt de vista operatiu. En primer lloc es fa una anàlisi de la cadena de producció de carn porcina, resaltant-ne els canvis del sector que han influit en la fase d'engreixament. La conclusió d'aquesta anàlisi és el plantejament d'un model per prendre decisions degut al canvi de paradigma que s'evidencia: els productors de porcs en la fase d'engreix cal que orientin la gestió del paràmetres operatius i els productes finals a les exigències i gustos dels seus clients. Seguidament, es presenta el sistema d'ajut a la decisió basat en un model biològic que explica l'evolució de les variables productives (pes i consum de pinso). A més també prediu les variables associades a característiques de la canal, com són el percentatge de magre, la proporció de peces, el rendiment i el greix intramuscular. El sistema té en compte tres mercats de carn porcina alternatius: 1) basat en pes viu, 2) basat en mèrits de la canal (percentatge de magre) y 3) basat en el valor de les peces nobles resultants de l'especejament de l'animal. L'objetiu del sistema és determinar la millor estratègia d'enviament per a cadascun dels genotips que s'han estudiat (alternatives de producció) depenent del mercat on seran enviats els animals. A més, també ha estat estudiat l'efecte de la variabilitat biològica dels animals dins del lot sobre els valors econòmics. També s'ha considerat l'opció d'enviar els animals en diverses etapes per tal d'homogeneitzar el pes dels animals enviats. Aquest problema ha estat estudiat seguint l'enfocament de programació dinàmica. En els darrers capítols es presenten quatre aplicacions del model que s'han desenvolupat al llarg del treball. En un futur els mercats de carn porcina tindran la tendència a ser més definits, per tant la producció en la fase d'engreixament porcí hauria d'integrar i tenir en compte les demandes i les exigències del consumidor.
Resumo:
The aim of this thesis is to narrow the gap between two different control techniques: the continuous control and the discrete event control techniques DES. This gap can be reduced by the study of Hybrid systems, and by interpreting as Hybrid systems the majority of large-scale systems. In particular, when looking deeply into a process, it is often possible to identify interaction between discrete and continuous signals. Hybrid systems are systems that have both continuous, and discrete signals. Continuous signals are generally supposed continuous and differentiable in time, since discrete signals are neither continuous nor differentiable in time due to their abrupt changes in time. Continuous signals often represent the measure of natural physical magnitudes such as temperature, pressure etc. The discrete signals are normally artificial signals, operated by human artefacts as current, voltage, light etc. Typical processes modelled as Hybrid systems are production systems, chemical process, or continuos production when time and continuous measures interacts with the transport, and stock inventory system. Complex systems as manufacturing lines are hybrid in a global sense. They can be decomposed into several subsystems, and their links. Another motivation for the study of Hybrid systems is the tools developed by other research domains. These tools benefit from the use of temporal logic for the analysis of several properties of Hybrid systems model, and use it to design systems and controllers, which satisfies physical or imposed restrictions. This thesis is focused in particular types of systems with discrete and continuous signals in interaction. That can be modelled hard non-linealities, such as hysteresis, jumps in the state, limit cycles, etc. and their possible non-deterministic future behaviour expressed by an interpretable model description. The Hybrid systems treated in this work are systems with several discrete states, always less than thirty states (it can arrive to NP hard problem), and continuous dynamics evolving with expression: with Ki ¡ Rn constant vectors or matrices for X components vector. In several states the continuous evolution can be several of them Ki = 0. In this formulation, the mathematics can express Time invariant linear system. By the use of this expression for a local part, the combination of several local linear models is possible to represent non-linear systems. And with the interaction with discrete events of the system the model can compose non-linear Hybrid systems. Especially multistage processes with high continuous dynamics are well represented by the proposed methodology. Sate vectors with more than two components, as third order models or higher is well approximated by the proposed approximation. Flexible belt transmission, chemical reactions with initial start-up and mobile robots with important friction are several physical systems, which profits from the benefits of proposed methodology (accuracy). The motivation of this thesis is to obtain a solution that can control and drive the Hybrid systems from the origin or starting point to the goal. How to obtain this solution, and which is the best solution in terms of one cost function subject to the physical restrictions and control actions is analysed. Hybrid systems that have several possible states, different ways to drive the system to the goal and different continuous control signals are problems that motivate this research. The requirements of the system on which we work is: a model that can represent the behaviour of the non-linear systems, and that possibilities the prediction of possible future behaviour for the model, in order to apply an supervisor which decides the optimal and secure action to drive the system toward the goal. Specific problems can be determined by the use of this kind of hybrid models are: - The unity of order. - Control the system along a reachable path. - Control the system in a safe path. - Optimise the cost function. - Modularity of control The proposed model solves the specified problems in the switching models problem, the initial condition calculus and the unity of the order models. Continuous and discrete phenomena are represented in Linear hybrid models, defined with defined eighth-tuple parameters to model different types of hybrid phenomena. Applying a transformation over the state vector : for LTI system we obtain from a two-dimensional SS a single parameter, alpha, which still maintains the dynamical information. Combining this parameter with the system output, a complete description of the system is obtained in a form of a graph in polar representation. Using Tagaki-Sugeno type III is a fuzzy model which include linear time invariant LTI models for each local model, the fuzzyfication of different LTI local model gives as a result a non-linear time invariant model. In our case the output and the alpha measure govern the membership function. Hybrid systems control is a huge task, the processes need to be guided from the Starting point to the desired End point, passing a through of different specific states and points in the trajectory. The system can be structured in different levels of abstraction and the control in three layers for the Hybrid systems from planning the process to produce the actions, these are the planning, the process and control layer. In this case the algorithms will be applied to robotics ¡V a domain where improvements are well accepted ¡V it is expected to find a simple repetitive processes for which the extra effort in complexity can be compensated by some cost reductions. It may be also interesting to implement some control optimisation to processes such as fuel injection, DC-DC converters etc. In order to apply the RW theory of discrete event systems on a Hybrid system, we must abstract the continuous signals and to project the events generated for these signals, to obtain new sets of observable and controllable events. Ramadge & Wonham¡¦s theory along with the TCT software give a Controllable Sublanguage of the legal language generated for a Discrete Event System (DES). Continuous abstraction transforms predicates over continuous variables into controllable or uncontrollable events, and modifies the set of uncontrollable, controllable observable and unobservable events. Continuous signals produce into the system virtual events, when this crosses the bound limits. If this event is deterministic, they can be projected. It is necessary to determine the controllability of this event, in order to assign this to the corresponding set, , controllable, uncontrollable, observable and unobservable set of events. Find optimal trajectories in order to minimise some cost function is the goal of the modelling procedure. Mathematical model for the system allows the user to apply mathematical techniques over this expression. These possibilities are, to minimise a specific cost function, to obtain optimal controllers and to approximate a specific trajectory. The combination of the Dynamic Programming with Bellman Principle of optimality, give us the procedure to solve the minimum time trajectory for Hybrid systems. The problem is greater when there exists interaction between adjacent states. In Hybrid systems the problem is to determine the partial set points to be applied at the local models. Optimal controller can be implemented in each local model in order to assure the minimisation of the local costs. The solution of this problem needs to give us the trajectory to follow the system. Trajectory marked by a set of set points to force the system to passing over them. Several ways are possible to drive the system from the Starting point Xi to the End point Xf. Different ways are interesting in: dynamic sense, minimum states, approximation at set points, etc. These ways need to be safe and viable and RchW. And only one of them must to be applied, normally the best, which minimises the proposed cost function. A Reachable Way, this means the controllable way and safe, will be evaluated in order to obtain which one minimises the cost function. Contribution of this work is a complete framework to work with the majority Hybrid systems, the procedures to model, control and supervise are defined and explained and its use is demonstrated. Also explained is the procedure to model the systems to be analysed for automatic verification. Great improvements were obtained by using this methodology in comparison to using other piecewise linear approximations. It is demonstrated in particular cases this methodology can provide best approximation. The most important contribution of this work, is the Alpha approximation for non-linear systems with high dynamics While this kind of process is not typical, but in this case the Alpha approximation is the best linear approximation to use, and give a compact representation.
Resumo:
El desalineamiento temporal es la incorrespondencia de dos señales debido a una distorsión en el eje temporal. La Detección y Diagnóstico de Fallas (Fault Detection and Diagnosis-FDD) permite la detección, el diagnóstico y la corrección de fallos en un proceso. La metodología usada en FDD está dividida en dos categorías: técnicas basadas en modelos y no basadas en modelos. Esta tesis doctoral trata sobre el estudio del efecto del desalineamiento temporal en FDD. Nuestra atención se enfoca en el análisis y el diseño de sistemas FDD en caso de problemas de comunicación de datos, como retardos y pérdidas. Se proponen dos técnicas para reducir estos problemas: una basada en programación dinámica y la otra en optimización. Los métodos propuestos han sido validados sobre diferentes sistemas dinámicos: control de posición de un motor de corriente continua, una planta de laboratorio y un problema de sistemas eléctricos conocido como hueco de tensión.
Resumo:
In this work, we deal with the problem of packing (orthogonally and without overlapping) identical rectangles in a rectangle. This problem appears in different logistics settings, such as the loading of boxes on pallets, the arrangements of pallets in trucks and the stowing of cargo in ships. We present a recursive partitioning approach combining improved versions of a recursive five-block heuristic and an L-approach for packing rectangles into larger rectangles and L-shaped pieces. The combined approach is able to rapidly find the optimal solutions of all instances of the pallet loading problem sets Cover I and II (more than 50 000 instances). It is also effective for solving the instances of problem set Cover III (almost 100 000 instances) and practical examples of a woodpulp stowage problem, if compared to other methods from the literature. Some theoretical results are also discussed and, based on them, efficient computer implementations are introduced. The computer implementation and the data sets are available for benchmarking purposes. Journal of the Operational Research Society (2010) 61, 306-320. doi: 10.1057/jors.2008.141 Published online 4 February 2009
Resumo:
When modeling real-world decision-theoretic planning problems in the Markov Decision Process (MDP) framework, it is often impossible to obtain a completely accurate estimate of transition probabilities. For example, natural uncertainty arises in the transition specification due to elicitation of MOP transition models from an expert or estimation from data, or non-stationary transition distributions arising from insufficient state knowledge. In the interest of obtaining the most robust policy under transition uncertainty, the Markov Decision Process with Imprecise Transition Probabilities (MDP-IPs) has been introduced to model such scenarios. Unfortunately, while various solution algorithms exist for MDP-IPs, they often require external calls to optimization routines and thus can be extremely time-consuming in practice. To address this deficiency, we introduce the factored MDP-IP and propose efficient dynamic programming methods to exploit its structure. Noting that the key computational bottleneck in the solution of factored MDP-IPs is the need to repeatedly solve nonlinear constrained optimization problems, we show how to target approximation techniques to drastically reduce the computational overhead of the nonlinear solver while producing bounded, approximately optimal solutions. Our results show up to two orders of magnitude speedup in comparison to traditional ""flat"" dynamic programming approaches and up to an order of magnitude speedup over the extension of factored MDP approximate value iteration techniques to MDP-IPs while producing the lowest error of any approximation algorithm evaluated. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
O objetivo desta dissertação é analisar o uso de regras ótimas irrestritas e de regras simples restritas de política monetária para a economia brasileira, com especial atenção ao impacto da taxa de câmbio na transmissão da política monetária. As regras foram encontradas através de um processo de programação dinâmica e comparadas em termos da eficiência econômica de cada uma, medida pela redução da variância do produto e da inflação. Estes resultados serviram de referência para avaliar o desempenho do regime de metas de inflação no Brasil, desde a sua implementação em julho de 1999.
Resumo:
A contractive method for computing stationary solutions of intertemporal equilibrium models is provide. The method is is implemented using a contraction mapping derived from the first-order conditions. The deterministic dynamic programming problem is used to illustrate the method. Some numerical examples are performed.
Resumo:
This paper presents results of a pricing system to compute the option adjusted spread ("DAS") of Eurobonds issued by Brazilian firms. The system computes the "DAS" over US treasury rates taktng imo account the embedded options present on these bonds. These options can be calls ("callable bond"), puts ("putable bond") or combinations ("callable and putable bond"). The pricing model takes into account the evolution of the term structure along time, is compatible with the observable market term structure and is able to compute risk measures such as duration and convexity, and pricing and hedging of options on these bonds. Examples show the ejJects of the embedded options on the spread and risk measures as well as the ejJects on the spread due to variations on the volatility parameters ofthe short rate.
Resumo:
This paper uses dynamic programming to study the time consistency of optimal macroeconomic policy in economies with recurring public deficits. To this end, a general equilibrium recursive model introduced in Chang (1998) is extended to include govemment bonds and production. The original mode! presents a Sidrauski economy with money and transfers only, implying that the need for govemment fmancing through the inflation tax is minimal. The extended model introduces govemment expenditures and a deficit-financing scheme, analyzing the SargentWallace (1981) problem: recurring deficits may lead the govemment to default on part of its public debt through inflation. The methodology allows for the computation of the set of alI sustainable stabilization plans even when the govemment cannot pre-commit to an optimal inflation path. This is done through value function iterations, which can be done on a computeI. The parameters of the extended model are calibrated with Brazilian data, using as case study three Brazilian stabilization attempts: the Cruzado (1986), Collor (1990) and the Real (1994) plans. The calibration of the parameters of the extended model is straightforward, but its numerical solution proves unfeasible due to a dimensionality problem in the algorithm arising from limitations of available computer technology. However, a numerical solution using the original algorithm and some calibrated parameters is obtained. Results indicate that in the absence of govemment bonds or production only the Real Plan is sustainable in the long run. The numerical solution of the extended algorithm is left for future research.
Resumo:
We consider a class of sampling-based decomposition methods to solve risk-averse multistage stochastic convex programs. We prove a formula for the computation of the cuts necessary to build the outer linearizations of the recourse functions. This formula can be used to obtain an efficient implementation of Stochastic Dual Dynamic Programming applied to convex nonlinear problems. We prove the almost sure convergence of these decomposition methods when the relatively complete recourse assumption holds. We also prove the almost sure convergence of these algorithms when applied to risk-averse multistage stochastic linear programs that do not satisfy the relatively complete recourse assumption. The analysis is first done assuming the underlying stochastic process is interstage independent and discrete, with a finite set of possible realizations at each stage. We then indicate two ways of extending the methods and convergence analysis to the case when the process is interstage dependent.
Resumo:
This dissertation presents a methodology to the optimization of a predial system of cold water distribution. It s about a study of a case applied to the Tropical Buzios Residential Condominium, located in the Búzio s Beach, Nísia Floresta city, the east coast of the Rio Grande do Norte state, twenty kilometers far from Natal. The design of cold water distribution networks according to Norm NBR 5626 of the ABNT - Brazilian Association of Techniques Norms, does not guarantee that the joined solution is the optimal solution of less cost. It s necessary the use of an optimization methodology, that supplies us, between all the possible solutions, the minimum cost solution. In the optimization process of the predial system of water distribution of the Tropical Búzios Condominium, is used Method Granados, that is an iterative algorithm of optimization, based on the Dynamic Programming, that supplies the minimum cost s network, in function of the piezometric quota of the reservoir. For the application of this Method in ramifies networks, is used a program of computer in C language. This process is divided in two stages: attainment of the previous solution and reduction of the piezometric quota of headboard. In the attainment of the previous solution, the minors possible diameters are used that guarantee the limit of maximum speed and the requirements of minimum pressures. The piezometric quota of headboard is raised to guarantee these requirements. In the second stage of the Granados Method, an iterative process is used and it objective is to reduce the quota of headboard gradually, considering the substitution of stretches of the network pipes for the subsequent diameters, considering a minimum addition of the network cost. The diameter change is made in the optimal stretch that presents the lesser Exchange Gradient. The process is locked up when the headboard quota of desired is reached. The optimized network s material costs are calculated, and is made the analysis of the same ones, through the comparison with the conventional network s costs
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
One of the main goals of the pest control is to maintain the density of the pest population in the equilibrium level below economic damages. For reaching this goal, the optimal pest control problem was divided in two parts. In the first part, the two optimal control functions were considered. These functions move the ecosystem pest-natural enemy at an equilibrium state below the economic injury level. In the second part, the one optimal control function stabilizes the ecosystem in this level, minimizing the functional that characterizes quadratic deviations of this level. The first problem was resolved through the application of the Maximum Principle of Pontryagin. The Dynamic Programming was used for the resolution of the second optimal pest control problem.
Resumo:
Neste artigo é proposto um método semiautomático para extração de rodovias combinando um estereopar de imagens aéreas de baixa resolução com um poliedro gerado a partir de um modelo digital do terreno (MDT). O problema é formulado no espaço-objeto através de uma função objetivo que modela o objeto 'rodovia' como uma curva suave e pertencente a uma superfície poliédrica. A função objetivo proposta depende também de informações radiométricas, que são acessadas no espaço-imagem via relação de colinearidade entre pontos da rodovia no espaço-objeto e os correspondentes nos espaços imagem do estereopar. A linha poligonal que melhor modela a rodovia selecionada é obtida por otimização no espaço-objeto da função objetivo, tendo por base o algoritmo de programação dinâmica. O processo de otimização é iterativo e dependente do fornecimento por um operador de uma aproximação inicial para a rodovia selecionada. Os resultados obtidos mostraram que o método é robusto frente a anomalias existentes ao longo das rodovias, tais como obstruções causadas por sombras e árvores.
Resumo:
In this paper we consider nonautonomous optimal control problems of infinite horizon type, whose control actions are given by L-1-functions. We verify that the value function is locally Lipschitz. The equivalence between dynamic programming inequalities and Hamilton-Jacobi-Bellman (HJB) inequalities for proximal sub (super) gradients is proven. Using this result we show that the value function is a Dini solution of the HJB equation. We obtain a verification result for the class of Dini sub-solutions of the HJB equation and also prove a minimax property of the value function with respect to the sets of Dini semi-solutions of the HJB equation. We introduce the concept of viscosity solutions of the HJB equation in infinite horizon and prove the equivalence between this and the concept of Dini solutions. In the Appendix we provide an existence theorem. (c) 2006 Elsevier B.V. All rights reserved.