499 resultados para Dracaena marginata
Resumo:
The taxonomy and stratigraphy of pelagic Paleocene diatoms from ODP Sites 698, 700, and 702 and DSDP Site 524 in the South Atlantic and DSDP Site 214 in the Indian Ocean are presented, as well as paleogeographic and paleoecologic implications. Eleven new species and one new variety are described and one new combination is proposed: Coscinodiscus cruxii sp. nov. Grunowiella palaeocaenica var. alternans var. nov. Hemiaulusl beatus sp. nov. Hemiaulusl ciesielskii sp. nov. Hemiaulusl conicus sp. nov. Hemiaulus kristoffersenii sp. nov. Hemiaulus nocchiae sp. nov. Hemiaulusl oonkii sp. nov. Hemiaulusl velatus sp. nov. Triceratium gombosii sp. nov. Trochosira gracillima comb. nov. Trochosira marginata sp. nov. Trochosira radiata sp. nov. Hole 700B provides one of the most continuous diatomaceous Paleocene profiles known. Stratigraphic ranges of diatom species from this and other Southern Hemisphere sites are calibrated against calcareous microfossil zones. The first-appearance datums of Triceratium gombosii, Hemiaulus incurvus, and Triceratium mirabile in Paleocene deep-sea sediments are useful for regional stratigraphic correlations. Quantitative analysis of the biosiliceous microfossil groups (diatoms, silicoflagellates, radiolarians, and archaeomonadaceae) shows that preservation of diatoms is confined primarily to the upper Paleocene (planktonic foraminifer Zones P3 and P4 and calcareous nannofossil Zones upper NP5 to lower NP9). In the lower Paleocene only short intervals in Hole 700B are diatomaceous. A correlation between the degree of silica diagenesis and the calcium carbonate content of the sediment is not obvious. Diatom species analysis reflects changes in the paleoenvironment between island-related upwelling conditions with highly diverse and well-preserved diatom assemblages and less productive periods resulting in less wellpreserved diatom assemblages with a higher content of robust neritic diatoms.
Resumo:
We present a high resolution, multiproxy study of the relationship between pelagic and benthic environments of a coastal upwelling system in the subtropical NE Atlantic Ocean. Marine sediments corresponding to late MIS3 to the Holocene in the radiocarbon dated core GeoB7926, retrieved off Mauritania (21°N) were analysed to reconstruct productivity in surface waters and its linkage to deep waters during the last 35 ka BP. High latitude cold events and changes in atmospheric and oceanographic dynamics influenced upwelling intensity over this time period. Subsequently, this caused changes in primary productivity off this low-latitude coastal upwelling locality. The benthic foraminiferal fauna displays four main community shifts corresponding to fundamental climatic events, first of all during late MIS3 (35-28 ka BP), secondly from 28 to 19 ka BP (including Heinrich event 2 and the LGM), thirdly within Heinrich event 1, the Bølling Allerød and the Younger Dryas (18-11.5 ka BP) and finally during the Holocene (11.5-0 ka BP). In particular, strong pelagic-benthic coupling is apparent in MIS 3, as demonstrated by increased primary productivity, indicated by moderate DAR and the dominance of benthic foraminiferal species which prefer fresh phytodetritus. A decline in upwelling intensity and nutrient availability follows, which resulted in a proportionately larger amount of older, degraded matter, provoking a shift in the benthic foraminifera fauna composition. This rapid response of the benthic environment continues with a progressive increase in upwelling intensity due to sea level and oceanographic changes and according high surface production during the LGM. During Heinrich event 1 and the Younger Dryas, extreme levels of primary production actually hindered benthic environment through the development of low oxygen conditions. After this period, a final change in benthic foraminiferal community composition occurs which indicates a return to more oxygenated conditions during the Holocene.
Resumo:
We report on benthic foraminifer results from Site 717 in the Distal Bengal Fan. Only 80 out of 380 samples contained useful benthic foraminifer information. However, we were able to identify four assemblages: 1. A present-day one dominated by Nuttallides umbonifera with some North Atlantic species; 2. An agglutinated fauna consisting of one species; 3. A reworked assemblage consisting of shallow-water forms; and 4. A reworked fauna consisting of an abundance of all kinds of forms including Cretaceous species. The reworked assemblage 4, we believe, represents a period when fan sediments were blocked from this area by east-west trending intraplate deformation. In the remainder of the core section, sedimentation appears to be dominated by Fan deposition with abundant terrestrial debris. In the infrequent pelagic intervals, it appears that abyssal water masses changed little since the late Miocene.
Resumo:
Long-term evolution is thought to take opportunities that arise as a consequence of mass extinction (as argued, for example, by Gould, 2002) and the following biotic recovery, but there is absolutely no evidence for this being the case. However, our study shows that eutrophication by oceanic mixing also played a part in the enhancement of several evolutionary events amongst marine organisms, and these results could indicate that the rates of oceanic biodiversification may be slowed if upwelling becomes weakened by future global warming. This paper defines three distinct evolutionary events of resting spores of the marine diatom genus Chaetoceros, to reconstruct past upwelling through the analysis of several DSDP, ODP and land-based successions from the North, South and equatorial Pacific as well as the Atlantic Ocean during the past 40 million years. The Atlantic Chaetoceros Explosion (ACE) event occurred across the E/O boundary in the North Atlantic, and is characterized by resting spore diversification that occurred as a consequence of the onset of upwelling following changes in thermohaline circulation through global cooling in the early Oligocene. Pacific Chaetoceros Explosion events-1 and -2 (PACE-1 and PACE-2) are characterized by relatively higher occurrences of iron input following the Himalayan uplift and aridification at 8.5 Ma and ca. 2.5 Ma in the North Pacific region. These events not only enhanced the diversification and increased abundance of primary producers, including that of Chaetoceros, other diatoms and seaweeds, but also stimulated the evolution of zooplankton and larger predators, such as copepods and marine mammals, which ate these phytoplankton and plants. Current thinking suggests new evolutionary niches open up after a mass extinction, but our study finds that eutrophication can also stimulate evolutionary diversification. Moreover, in the opposite fashion, our results show that as thermohaline circulation abates, global warming progresses and the ocean surface becomes warmer, many marine organisms will be affected by the environmental degradation.
Resumo:
Paleobathymetric assessments of fossil foraminiferal faunas play a significant role in the analysis of the paleogeographic, sedimentary, and tectonic histories of New Zealand's Neogene marine sedimentary basins. At depths >100 m, these assessments often have large uncertainties. This study, aimed at improving the precision of paleodepth assessments, documents the present-day distribution of deep-sea foraminifera (>63 µm) in 66 samples of seafloor sediment at 90-700 m water depth (outer shelf to mid-abyssal), east of New Zealand. One hundred and thirty-nine of the 465 recorded species of benthic foraminifera are new records for the New Zealand region. Characters of the foraminiferal faunas which appear to provide the most useful information for estimating paleobathymetry are, in decreasing order of reliability: relative abundance of common benthic species; benthic species associations; upper depth limits of key benthic species; and relative abundance of planktic foraminifera. R mode cluster analysis on the quantitative census data of the 58 most abundant species of benthic foraminifera produced six species associations within three higher level clusters: (1) calcareous species most abundant at mid-bathyal to outer shelf depths (<1000 m); (2) calcareous species most abundant at mid-bathyal and greater depths (>600 m); (3) agglutinated species mostly occurring at deep abyssal depths (>3000 m). A detrended correspondence analysis ordination plot exhibits a strong relationship between these species associations and bathymetry. This is manifest in the bathymetric ranges of the relative abundance peaks of many of the common benthic species (e.g., Abditodentrix pseudothalmanni 500-2800 m, Bolivina robusta 200-650 m, Bulimina marginata f. marginata 20-600 m, B. marginata f. aculeata 400-3000 m, Cassidulina norvangi 1000-4500 m, Epistominella exigua 1000-4700 m, and Trifarina angulosa 10-650 m), which should prove useful in paleobathymetric estimates. The upper depth limits of 28 benthic foraminiferal species (e.g., Fursenkoina complanata 200 m, Bulimina truncana 450 m, Melonis affinis 550 m, Eggerella bradyi 750 m, and Cassidulina norvangi 1000 m) have potential to improve the precision of paleobathymetric estimates based initially on the total faunal composition. The planktic percentage of foraminiferal tests increases from outer shelf to upper abyssal depths followed by a rapid decline within the foraminiferal lysocline (below c. 3600 m). A planktic percentage <50% is suggestive of shelf depths, and >50% is suggestive of bathyal or abyssal depths above the CCD. In the abyssal zone there is dramatic taphonomic loss of most agglutinated tests (except some textulariids) at burial depths of 0.1-0.2 m, which negates the potential usefulness of these taxa in paleobathymetric assessments.
Resumo:
An almost complete Upper Cretaceous sedimentary sequence recently recovered on the Kerguelen Plateau (southern Indian Ocean) during ODP Leg 183 was analysed for planktonic foraminifera in order to refine and integrate the zonal schemes previously proposed for the Southern Ocean area. Detailed biostratigraphic analysis carried out on holes 1135A, 1136A and 1138A (poleward of 50°S palaeolatitude during Late Cretaceous time) has allowed recognition of low and mid-high latitude bioevents, useful for correlation across latitudes, in addition to known Austral bioevents. The low latitude biozonation can be applied to Turonian sediments, because of the occurrence of Helvetoglobotruncana helvetica, which marks the boundary between Whiteinella archaeocretacea and Helvetoglobotruncana helvetica zones. The base of the Whiteinella archeocretacea Zone falls within the uppermost Cenomanian-Turonian black shale level in Hole 1138A. The stratigraphic interval from upper Turonian to uppermost Santonian can be resolved using bioevents recognized in the mid-high latitude sections. They are, in stratigraphic order: the last occurrence of Falsotruncana maslakovae in the Coniacian, the first occurrence of Heterohelix papula at the Coniacian/Santonian boundary, the extinction of the marginotruncanids in the late Santonian, and the first occurrence of Globigerinelloides impensus in the latest (?) Santonian. The remainder of the Late Cretaceous fits rather well in the Austral zonal scheme, except that Globigerinelloides impensus exhibits a stratigraphic range in agreement with its record at the mid-high latitude sections and extends further downwards than previously recorded at southern sites. Therefore, despite the poor recovery in certain intervals and the presence of several hiatuses of local and regional importance as revealed by correlation among holes, a more detailed zonal scheme has been obtained (mainly for the less resolved Turonian-Santonian interval). Remarks on some species often overlooked in literature are also provided.
Resumo:
Oxygen isotope data for upper Turonian planktonic foraminifera at Deep Sea Drilling Project Site 511 (Falkland Plateau, 60°S paleolatitude) exhibit an ~2 per mil excursion to values as low as -4.66 per mil (Vienna Peedee belemnite standard; PDB) coincident with the warmest tropical temperature estimates yet obtained for the open ocean. The lowest planktonic foraminifer d18O values suggest that the upper ocean was as warm as 30-32°C. This is an extraordinary temperature for 60°S latitude but is consistent with temperatures estimated from apparently coeval mollusc d18O from nearby James Ross Island (65°S paleolatitude). Glassy textural preservation, a well-defined depth distribution in Site 511 planktonics, low sediment burial temperature (~32°C), and lack of evidence of highly depleted pore waters argue against diagenesis (even solid state diffusion) as the cause of the very depleted planktonic values. The lack of change in benthic foraminifer d18O suggests brackish water capping as the mechanism for the low planktonic d18O values. However, mixing ratio calculations show that the amount of freshwater required to produce a 2 per mil shift in ambient water would drive a 7 psu decrease in salinity. The abundance and diversity of planktonic foraminifera and nannofossils, high planktonic:benthic ratios, and the appearance of keeled foraminifera argue against lower-than-normal marine salinities. Isotope calculations and climate models indicate that we cannot call upon more depleted freshwater d18O to explain this record. Without more late Turonian data, especially from outside the South Atlantic basin, we can currently only speculate on possible causes of this paradoxical record from the core of the Cretaceous greenhouse.
Resumo:
Indicators of surface-water productivity and bottom-water oxygenation have been studied for the age interval from the latest Pleistocene to the Holocene at three holes (679D, 680B, and 68IB) located in the center and at the edges of an upwelling cell at approximately 11°S on the Peruvian continental margin. Upwelling activity was maximal at this latitude during d18O Stages 1 (lower part), 3, the upper part of 5, the lower part of 6, and 7, as documented by high diatom abundance. During these time intervals, the bottom water was poorly oxygenated, as documented by low diversity benthic foraminiferal assemblages that are dominated by B. seminuda s.l. Both surface- and bottom-water-circulation patterns appear to have changed rapidly over short time intervals. Due to changes in surface circulation, the intensity of upwelling decreased, thereby decreasing the concentration of nutrients, and reducing the supply of organic matter to the bottom. Radiolarians became more abundant in the surface waters, and the bottom-water environment was less depleted in oxygen, allowing for the establishment of more diverse benthic foraminiferal assemblages. Surface-water productivity was probably minimal during the early part of d18O Stages 5 and 9, as indicated by the increased abundance of planktonic foraminifers and pteropods and their subsequent preservation.
Resumo:
Records of benthic foraminifera from North Atlantic DSDP Site 607 and Hole 610A indicate changes in deep water conditions through the middle to late Pliocene (3.15 to 2.85 Ma). Quantitative analyses of modem associations in the North Atlantic indicate that seven species, Fontbotia wuellerstorfi, Cibicidoides kullenbergi, Uvigerina peregrina, Nuttallides umboniferus, Melonis pompilioides, Globocassidulina subglobosa and Epistominella exigua are useful for paleoenvironmental interpretation. The western North Atlantic basin (Site 607) was occupied by North Atlantic Deep Water (NADW) until c. 2.88 Ma. At that time, N. umboniferus increased, indicating an influx of Southern Ocean Water (SOW). The eastern North Atlantic basin (Hole 610A) was occupied by a relatively warm water mass, possibly Northeastern Atlantic Deep Water (NEADW), through c. 2.94 Ma when SOW more strongly influenced the site. These interpretations are consistent with benthic delta18O and delta13C records from 607 and 610A (Raymo et al., 1992). The results presented in this paper suggest that the North Atlantic was strongly influenced by northern component deep water circulation until 2.90-2.95 Ma. After that there was a transition toward a glacially driven North Atlantic circulation more strongly influenced by SOW associated with the onset of Northern Hemisphere glaciation. The circulation change follows the last significant SST and atmospheric warming prior to c. 2.6 Ma.
Resumo:
Cretaceous benthic foraminifers from Site 585 in the East Mariana Basin, western Pacific Ocean, provide an environmental and tectonic history of the Basin and the surrounding seamounts. Age diagnostic species (from a fauna of 155 benthic species identified) range from late Aptian to Maestrichtian in age. Displaced species in sediments derived from the tops and flanks of nearby seamounts were deposited sporadically on the Basin floor well below the carbonate compensation depth (CCD) at abyssal depths of 5000 to 6000 m. These depths, characterized by an indigenous assemblage of benthic foraminifers, recrystallized radiolarians, fish debris, and sponge spicules, existed in the Mariana Basin from late Aptian to the present. Early Albian and older edifice-building volcanism had reached the photic zone with associated shallow-water bank or reef environments. By middle Albian, the dominant source areas subsided to outer-neritic to upper-bathyal depths. Major volcanic activity ceased and fine-grained sediments were deposited by distal turbidites, although intermittent volcanism and the influx of rare neritic material continued until the late Albian. By the Cenomanian to Turonian, upper- to middle-bathyal depths were reached by the dominant source areas, and the sediments recovered from this interval include organic carbon-rich layers. Rare benthic foraminifers from the Coniacian-Santonian interval indicate a continuation of dominantly middle-bathyal source areas. A change in sedimentation during the Campanian-Maestrichtian from older zeolitic claystone to abundant chert in the Campanian, and nannofossil chalk and claystone in the Maestrichtian resulted from migration of the site beneath the equatorial productive zone due to northwestward plate motion. The appearance of rare middle-neritic and upper-bathyal species in the Maestrichtian interval associated with volcanogenic debris gives evidence of the remobilization and downslope transport of pelagic deposits due to thermally induced uplift. Episodic redeposition of shallow-water material during the Aptian-Albian was produced by edifice-building volcanism perhaps combined with eustatic lowering of sea level. The Cenomanian-Turonian pulse coincided with a low global sea-level stand as does the transported material during the Coniacian-Santonian. The Maestrichtian pulse was caused by renewed midplate volcanism that extended over a large area of the central Pacific.
Resumo:
Trigger weight (TWC) and piston (PC) cores obtained from surveys of the three sites drilled during Ocean Drilling Program (ODP) Leg 105 were studied in detail for benthic foraminiferal assemblages, total carbonate (all sites), planktonic foraminiferal abundances (Sites 645 and 647), and stable isotopes (Sites 646 and 647). These high-resolution data provide the link between modern environmental conditions represented by the sediment in the TWC and the uppermost cores of the ODP holes. This link provides essential control data for interpretating late Pleistocene paleoceanographic records from these core holes. At Site 645 in Baffin Bay, local correlation is difficult because the area is dominated by ice-rafted deposits and by debris flows and/or turbidite sedimentation. At the two Labrador Sea sites (646 and 647), the survey cores and uppermost ODP cores can be correlated. High-resolution data from the site survey cores also provide biostratigraphic data that refine the interpretations compiled from core-catcher samples at each ODP site.
Resumo:
Deep-sea benthic foraminiferal assemblages from Ocean Drilling Program (ODP) Site 1143 located in the southern South China Sea (SCS) were investigated to evaluate the relationship between faunal composition patterns and paleoceanographic changes during the last 6 million years (late Miocene to Holocene). We used multivariate statistics (correspondence analysis) to analyze carbon-flux-related changes in assemblage composition of benthic foraminifers. Additional proxies for carbon flux and deep-water ventilation include delta13C records of epifaunal Cibicidoides wuellerstorfi and infaunal Uvigerina peregrina var. dirupta and Melonis pompilioides, benthic foraminiferal accumulation rates (BFARs), diversity indices, and relative abundances of indicator species. We observe three significant benthic faunal changes in the southern South China Sea during the last 6 million years. Strong fluctuations in BFAR and relative abundance of productivity indicator species between glacial and interglacial stages after the mid-Pleistocene revolution (MPR) at approximately 0.9 Ma, indicating stronger seasonal carbon flux fluctuations, are accompanied by the extinction of such species as Stilostomella spp. Increases in carbon flux indicator species are coupled with an overall decrease in benthic foraminifer diversity around 3.0 Ma in the late Pliocene. This may indicate increasing carbon flux in a period of productivity maximum caused by enhanced offshore upwelling from intensified winter monsoon wind strength.
Resumo:
The Bounty Trough, east of New Zealand, lies along the southeastern edge of the present-day Subtropical Front (STF), and is a major conduit via the Bounty Channel, for terrigenous sediment supply from the uplifted Southern Alps to the abyssal Bounty Fan. Census data on 65 benthic foraminiferal faunas (>63 µm) from upper bathyal (ODP 1119), lower bathyal (DSDP 594) and abyssal (ODP 1122) sequences, test and refine existing models for the paleoceanographic and sedimentary history of the trough through the last 150 ka (marine isotope stages, MIS 6-1). Cluster analysis allows recognition of six species groups, whose distribution patterns coincide with bathymetry, the climate cycles and displaced turbidite beds. Detrended canonical correspondence analysis and comparisons with modern faunal patterns suggest that the groups are most strongly influenced by food supply (organic carbon flux), and to a lesser extent by bottom water oxygen and factors relating to sediment type. Major faunal changes at upper bathyal depths (1119) probably resulted from cycles of counter-intuitive seaward-landward migrations of the Southland Front (SF) (north-south sector of the STF). Benthic foraminiferal changes suggest that lower nutrient, cool Subantarctic Surface Water (SAW) was overhead in warm intervals, and higher nutrient-bearing, warm neritic Subtropical Surface Water (STW) was overhead in cold intervals. At lower bathyal depths (594), foraminiferal changes indicate increased glacial productivity and lowered bottom oxygen, attributed to increased upwelling and inflow of cold, nutrient-rich, Antarctic Intermediate Water (AAIW) and shallowing of the oxygen-minimum zone (upper Circum Polar Deep Water, CPDW). The observed cyclical benthic foraminiferal changes are not a result of associations migrating up and down the slope, as glacial faunas (dominated by Globocassidulina canalisuturata and Eilohedra levicula at upper and lower bathyal depths, respectively) are markedly different from those currently living in the Bounty Trough. On the abyssal Bounty Fan (1122), faunal changes correlate most strongly with grain size, and are attributed to varying amounts of mixing of displaced and in-situ faunas. Most of the displaced foraminifera in turbiditic sand beds are sourced from mid-outer shelf depths at the head of the Bounty Channel. Turbidity currents were more prevalent during, but not restricted to, glacial intervals.
Resumo:
Reworked shallow-water foraminifers that settled on the upper slope of the central Great Barrier Reef at Site 821 (water depth, 212.6 m) were used as indicators of the paleoclimatic and paleoenvironmental conditions that have controlled the Pleistocene evolution of the adjacent platform. Throughout the 400-m-thick sequence drilled, the nature, composition, and distribution of the shallow-water foraminiferal assemblages studied indicate that (1) all the species recorded are at present living in diverse tropical, reef-related areas of the Indo-Pacific and Atlantic provinces; (2) the composition of the microfaunal taphocoenoses is almost identical between the different stratigraphic intervals studied and the modern Great Barrier Reef environments; (3) inner-neritic, tropical environments have continued to develop since the middle Pleistocene; (4) high- to moderate-energy platform edges occurred repeatedly throughout Pleistocene time. These factors may suggest that, since the beginning of the Pleistocene, several reef-like tracts have grown successively on the central area of the northeastern Australian shelf edge. These tracts probably had a sufficiently evolved morphological zonation to act as shelters for foraminiferal biocoenoses of high species diversity.