977 resultados para Double strand break
Resumo:
Background There is evidence that certain mutations in the double-strand break repair pathway ataxia-telangiectasia mutated gene act in a dominant-negative manner to increase the risk of breast cancer. There are also some reports to suggest that the amino acid substitution variants T2119C Ser707Pro and C3161G Pro1054Arg may be associated with breast cancer risk. We investigate the breast cancer risk associated with these two nonconservative amino acid substitution variants using a large Australian population-based case–control study. Methods The polymorphisms were genotyped in more than 1300 cases and 600 controls using 5' exonuclease assays. Case–control analyses and genotype distributions were compared by logistic regression. Results The 2119C variant was rare, occurring at frequencies of 1.4 and 1.3% in cases and controls, respectively (P = 0.8). There was no difference in genotype distribution between cases and controls (P = 0.8), and the TC genotype was not associated with increased risk of breast cancer (adjusted odds ratio = 1.08, 95% confidence interval = 0.59–1.97, P = 0.8). Similarly, the 3161G variant was no more common in cases than in controls (2.9% versus 2.2%, P = 0.2), there was no difference in genotype distribution between cases and controls (P = 0.1), and the CG genotype was not associated with an increased risk of breast cancer (adjusted odds ratio = 1.30, 95% confidence interval = 0.85–1.98, P = 0.2). This lack of evidence for an association persisted within groups defined by the family history of breast cancer or by age. Conclusion The 2119C and 3161G amino acid substitution variants are not associated with moderate or high risks of breast cancer in Australian women.
Resumo:
Neurodegenerative disorders are heterogenous in nature and include a range of ataxias with oculomotor apraxia, which are characterised by a wide variety of neurological and ophthalmological features. This family includes recessive and dominant disorders. A subfamily of autosomal recessive cerebellar ataxias are characterised by defects in the cellular response to DNA damage. These include the well characterised disorders Ataxia-Telangiectasia (A-T) and Ataxia-Telangiectasia Like Disorder (A-TLD) as well as the recently identified diseases Spinocerebellar ataxia with axonal neuropathy Type 1 (SCAN1), Ataxia with Oculomotor Apraxia Type 2 (AOA2), as well as the subject of this thesis, Ataxia with Oculomotor Apraxia Type 1 (AOA1). AOA1 is caused by mutations in the APTX gene, which is located at chromosomal locus 9p13. This gene codes for the 342 amino acid protein Aprataxin. Mutations in APTX cause destabilization of Aprataxin, thus AOA1 is a result of Aprataxin deficiency. Aprataxin has three functional domains, an N-terminal Forkhead Associated (FHA) phosphoprotein interaction domain, a central Histidine Triad (HIT) nucleotide hydrolase domain and a C-terminal C2H2 zinc finger. Aprataxins FHA domain has homology to FHA domain of the DNA repair protein 5’ polynucleotide kinase 3’ phosphatase (PNKP). PNKP interacts with a range of DNA repair proteins via its FHA domain and plays a critical role in processing damaged DNA termini. The presence of this domain with a nucleotide hydrolase domain and a DNA binding motif implicated that Aprataxin may be involved in DNA repair and that AOA1 may be caused by a DNA repair deficit. This was substantiated by the interaction of Aprataxin with proteins involved in the repair of both single and double strand DNA breaks (XRay Cross-Complementing 1, XRCC4 and Poly-ADP Ribose Polymerase-1) and the hypersensitivity of AOA1 patient cell lines to single and double strand break inducing agents. At the commencement of this study little was known about the in vitro and in vivo properties of Aprataxin. Initially this study focused on generation of recombinant Aprataxin proteins to facilitate examination of the in vitro properties of Aprataxin. Using recombinant Aprataxin proteins I found that Aprataxin binds to double stranded DNA. Consistent with a role for Aprataxin as a DNA repair enzyme, this binding is not sequence specific. I also report that the HIT domain of Aprataxin hydrolyses adenosine derivatives and interestingly found that this activity is competitively inhibited by DNA. This provided initial evidence that DNA binds to the HIT domain of Aprataxin. The interaction of DNA with the nucleotide hydrolase domain of Aprataxin provided initial evidence that Aprataxin may be a DNA-processing factor. Following these studies, Aprataxin was found to hydrolyse 5’adenylated DNA, which can be generated by unscheduled ligation at DNA breaks with non-standard termini. I found that cell extracts from AOA1 patients do not have DNA-adenylate hydrolase activity indicating that Aprataxin is the only DNA-adenylate hydrolase in mammalian cells. I further characterised this activity by examining the contribution of the zinc finger and FHA domains to DNA-adenylate hydrolysis by the HIT domain. I found that deletion of the zinc finger ablated the activity of the HIT domain against adenylated DNA, indicating that the zinc finger may be required for the formation of a stable enzyme-substrate complex. Deletion of the FHA domain stimulated DNA-adenylate hydrolysis, which indicated that the activity of the HIT domain may be regulated by the FHA domain. Given that the FHA domain is involved in protein-protein interactions I propose that the activity of Aprataxins HIT domain may be regulated by proteins which interact with its FHA domain. We examined this possibility by measuring the DNA-adenylate hydrolase activity of extracts from cells deficient for the Aprataxin-interacting DNA repair proteins XRCC1 and PARP-1. XRCC1 deficiency did not affect Aprataxin activity but I found that Aprataxin is destabilized in the absence of PARP-1, resulting in a deficiency of DNA-adenylate hydrolase activity in PARP-1 knockout cells. This implies a critical role for PARP-1 in the stabilization of Aprataxin. Conversely I found that PARP-1 is destabilized in the absence of Aprataxin. PARP-1 is a central player in a number of DNA repair mechanisms and this implies that not only do AOA1 cells lack Aprataxin, they may also have defects in PARP-1 dependant cellular functions. Based on this I identified a defect in a PARP-1 dependant DNA repair mechanism in AOA1 cells. Additionally, I identified elevated levels of oxidized DNA in AOA1 cells, which is indicative of a defect in Base Excision Repair (BER). I attribute this to the reduced level of the BER protein Apurinic Endonuclease 1 (APE1) I identified in Aprataxin deficient cells. This study has identified and characterised multiple DNA repair defects in AOA1 cells, indicating that Aprataxin deficiency has far-reaching cellular consequences. Consistent with the literature, I show that Aprataxin is a nuclear protein with nucleoplasmic and nucleolar distribution. Previous studies have shown that Aprataxin interacts with the nucleolar rRNA processing factor nucleolin and that AOA1 cells appear to have a mild defect in rRNA synthesis. Given the nucleolar localization of Aprataxin I examined the protein-protein interactions of Aprataxin and found that Aprataxin interacts with a number of rRNA transcription and processing factors. Based on this and the nucleolar localization of Aprataxin I proposed that Aprataxin may have an alternative role in the nucleolus. I therefore examined the transcriptional activity of Aprataxin deficient cells using nucleotide analogue incorporation. I found that AOA1 cells do not display a defect in basal levels of RNA synthesis, however they display defective transcriptional responses to DNA damage. In summary, this thesis demonstrates that Aprataxin is a DNA repair enzyme responsible for the repair of adenylated DNA termini and that it is required for stabilization of at least two other DNA repair proteins. Thus not only do AOA1 cells have no Aprataxin protein or activity, they have additional deficiencies in PolyADP Ribose Polymerase-1 and Apurinic Endonuclease 1 dependant DNA repair mechanisms. I additionally demonstrate DNA-damage inducible transcriptional defects in AOA1 cells, indicating that Aprataxin deficiency confers a broad range of cellular defects and highlighting the complexity of the cellular response to DNA damage and the multiple defects which result from Aprataxin deficiency. My detailed characterization of the cellular consequences of Aprataxin deficiency provides an important contribution to our understanding of interlinking DNA repair processes.
Resumo:
Homologous recombination (HR) repairs chromosome damage and is indispensable for tumor suppression in humans. RAD51 mediates the DNA strand-pairing step in HR. RAD51 associated protein 1 (RAD51AP1) is a RAD51-interacting protein whose function has remained elusive. Knockdown of RAD51AP1 in human cells by RNA interference engenders sensitivity to different types of genotoxic stress, and RAD51AP1 is epistatic to the HR protein XRCC3. Moreover, RAD51AP1-depleted cells are impaired for the recombinational repair of a DNA double-strand break and exhibit chromatid breaks both spontaneously and upon DNA-damaging treatment. Purified RAD51AP1 binds both dsDNA and a D loop structure and, only when able to interact with RAD51, greatly stimulates the RAD51-mediated D loop reaction. Biochemical and cytological results show that RAD51AP1 functions at a step subsequent to the assembly of the RAD51-ssDNA nucleoprotein filament. Our findings provide evidence that RAD51AP1 helps maintain genomic integrity via RAD51 recombinase enhancement.
Resumo:
Systemic lupus erythematosus (SLE) is distinct among autoimmune diseases because of its association with circulating autoantibodies reactive against host DNA. The precise role that anti-DNA antibodies play in SLE pathophysiology remains to be elucidated, and potential applications of lupus autoantibodies in cancer therapy have not previously been explored. We report the unexpected finding that a cell-penetrating lupus autoantibody, 3E10, has potential as a targeted therapy for DNA repair–deficient malignancies. We find that 3E10 preferentially binds DNA single-strand tails, inhibits key steps in DNA single-strand and double-strand break repair, and sensitizes cultured tumor cells and human tumor xenografts to DNA-damaging therapy, including doxorubicin and radiation. Moreover, we demonstrate that 3E10 alone is synthetically lethal to BRCA2-deficient human cancer cells and selectively sensitizes such cells to low-dose doxorubicin. Our results establish an approach to cancer therapy that we expect will be particularly applicable to BRCA2-related malignancies such as breast, ovarian, and prostate cancers. In addition, our findings raise the possibility that lupus autoantibodies may be partly responsible for the intrinsic deficiencies in DNA repair and the unexpectedly low rates of breast, ovarian, and prostate cancers observed in SLE patients. In summary, this study provides the basis for the potential use of a lupus anti-DNA antibody in cancer therapy and identifies lupus autoantibodies as a potentially rich source of therapeutic agents.
Resumo:
In contrast to extensive studies on familial breast cancer, it is currently unclear whether defects in DNA double strand break (DSB) repair genes play a role in sporadic breast cancer development and progression. We performed analysis of immunohistochemistry in an independent cohort of 235 were sporadic breast tumours. This analysis suggested that RAD51 expression is increased during breast cancer progression and metastasis and an oncogenic role for RAD51 when deregulated. Subsequent knockdown of RAD51 repressed cancer cell migration in vitro and reduced primary tumor growth in a syngeneic mouse model in vivo. Loss of RAD51 also inhibited associated metastasis not only in syngeneic mice but human xenografts and changed the metastatic gene expression profile of cancer cells, consistent with inhibition of distant metastasis. This demonstrates for the first time a new function of RAD51 that may underlie the proclivity of patients with RAD51 overexpression to develop distant metastasis. RAD51 is a potential biomarker and attractive drug target for metastatic triple negative breast cancer, with the capability to extend the survival of patients, which is less than 6 months.
Resumo:
The central dogma in radiation biology is that nuclear DNA is the critical target with respect to radiosensitivity. In accordance with the theoretical expectations, and in the absence of a conclusive model, the general consensus in the field has been to view chromatin as a homogeneous template for DNA damage and repair. This paradigm has been called into question by recent findings indicating a disparity in γ-irradiation-induced γH2AX foci formation in euchromatin and heterochromatin. Here, we have extended those studies and provide evidence that γH2AX foci form preferentially in actively transcribing euchromatin following γ-irradiation.
Resumo:
Mobile genetic elements constitute a remarkably diverse group of nonessential selfish genes that provide no apparent function to the host. These selfish genes have been implicated in host extinction, speciation and architecture of genetic systems. Homing endonucleases, encoded by the open reading frames embedded in introns or inteins of mobile genetic elements, possess double-stranded DNA-specific endonuclease activity. They inflict sequence-specific double-strand breaks at or near the homing site in intron- or intein-less allele. Subsequently, through nonreciprocal exchange the insertion sequence (intron or intein) is transferred from an intein- or intron-containing allele to an intein- or intron-less allele. The components of host double-strand break repair pathway are thought to finish the "homing" process. Several lines of evidence suggest that homing endonucleases are capable of promoting transposition into ectopic sites within or across genomes for their survival as well as dispersal in natural populations. The occurrence of inteins at high frequencies serves as instructive models for understanding the mechanistic aspects of the process of homing and its evolution. This review focuses on genetic, biochemical, structural, and phylogenetic aspects of homing endonucleases, and their comparison with restriction endonucleases.
Resumo:
Germline mutations in many of the genes that are involved in homologous recombination (HR)-mediated DNA double-strand break repair (DSBR) are associated with various human genetic disorders and cancer. RAD51 and RAD51 paralogs are important for HR and in the maintenance of genome stability. Despite the identification of five RAD51 paralogs over a decade ago, the molecular mechanism(s) by which RAD51 paralogs regulate HR and genome maintenance remains obscure. In addition to the known roles of RAD51C in early and late stages of HR, it also contributes to activation of the checkpoint kinase CHK2. One recent study identifies biallelic mutation in RAD51C leading to Fanconi anemia-like disorder. Whereas a second study reports monoallelic mutation in RAD51C associated with increased risk of breast and ovarian cancer. These reports show RAD51C is a cancer susceptibility gene. In this review, we focus on describing the functions of RAD51C in HR, DNA damage signaling and as a tumor suppressor with an emphasis on the new roles of RAD51C unveiled by these reports.
Resumo:
Natural products discovered from medicinal plants have played an important role in the treatment of cancer. In an effort to identify novel small molecules which can affect the proliferation of lymphoma cells, we tested methyl angolensate (MA), a plant derived tetranortriterpenoid, purified from the crude extract of the root callus of Soymida febrifuga commonly known as Indian red wood tree. We have tested MA for its cytotoxic properties on Burkitt's lymphoma cell lines, using various cellular assays. We observed that MA induces cytotoxicity in Daudi cells in a dose-dependent manner using trypan blue, MTT and LDH assays. We find that the treatment with MA led to activation of DNA double-strand break repair proteins including KU70 and KU80, suggesting the activation of nonhomologous DNA end joining pathway in surviving cells. Further, we find that methyl angolensate could induce apoptosis by cell cycle analysis, annexin V-FITC staining, DNA fragmentation and PARP cleavage. Besides, MA treatment led to reactive oxygen species generation and loss of mitochondrial transmembrane potential. These results suggest the activation of mitochondrial pathway of apoptosis. Hence, we identify MA as a potential chemotherapeutic agent against Daudi cells.
Resumo:
RAD51C, a RAD51 paralog, has been implicated in homologous recombination (HR), and germ line mutations in RAD51C are known to cause Fanconi anemia (FA)-like disorder and breast and ovarian cancers. The role of RAD51C in the FA pathway of DNA interstrand cross-link (ICL) repair and as a tumor suppressor is obscure. Here, we report that RAD51C deficiency leads to ICL sensitivity, chromatid-type errors, and G(2)/M accumulation, which are hallmarks of the FA phenotype. We find that RAD51C is dispensable for ICL unhooking and FANCD2 monoubiquitination but is essential for HR, confirming the downstream role of RAD51C in ICL repair. Furthermore, we demonstrate that RAD51C plays a vital role in the HR-mediated repair of DNA lesions associated with replication. Finally, we show that RAD51C participates in ICL and double strand break-induced DNA damage signaling and controls intra-S-phase checkpoint through CHK2 activation. Our analyses with pathological mutants of RAD51C that were identified in FA and breast and ovarian cancers reveal that RAD51C regulates HR and DNA damage signaling distinctly. Together, these results unravel the critical role of RAD51C in the FA pathway of ICL repair and as a tumor suppressor.
Resumo:
5,6-Bis(benzylideneamino)-2-mercaptopyrimidin-4-ol (SCR7) is a new anti cancer molecule having capability to selectively inhibit non-homologous end joining (NHEJ), one of the DNA double strand break (DSB) repair pathways inside the cells. In spite of the promising potential as an anticancer agent, hydrophobicity of SCR7 decreases its bioavailability. Herein the entrapment of SCR7 in Pluronic copolymer is reported. The size of the aggregates was determined by transmission electron microscopy (TEM) and dynamic light scattering (DLS) which yields an average diameter of 23 nm. SCR7 encapsulated micelles (ES) were also characterized by small-angle neutron scattering (SANS). Evaluation of its biological properties by using a variety of techniques, including Trypan blue, MTT and Live-dead cell assays, reveal that encapsulated SCR7 can induce cytotoxicity in cancer cell lines, being more effective in breast cancer cell line. Encapsulated SCR7 treatment resulted in accumulation of DNA breaks within the cells, resulting in cell cycle arrest at G1 phase and activation of apoptosis. More importantly, we found approximate to 5 fold increase in cell death, when encapsulated SCR7 was used in comparison with SCR7 alone.
Resumo:
Nonhomologous DNA end joining (NHEJ) is one of the major double-strand break (DSB) repair pathways in higher eukaryotes. Recently, it has been shown that alternative NHEJ (A-NHEJ) occurs in the absence of classical NHEJ and is implicated in chromosomal translocations leading to cancer. In the present study, we have developed a novel biochemical assay system utilizing DSBs flanked by varying lengths of microhomology to study microhomology-mediated alternative end joining (MMEJ). We show that MMEJ can operate in normal cells, when microhomology is present, irrespective of occurrence of robust classical NHEJ. Length of the microhomology determines the efficiency of MMEJ, 5 nt being obligatory. Using this biochemical approach, we show that products obtained are due to MMEJ, which is dependent on MRE11, NBS1, LIGASE III, XRCC1, FEN1 and PARP1. Thus, we define the enzymatic machinery and microhomology requirements of alternative NHEJ using a well-defined biochemical system.
Resumo:
DNA repair, one of the fundamental processes occurring in a cell, safeguards the genome and maintains its integrity. Among various DNA lesions, double-strand breaks are considered to be the most deleterious, as they can lead to potential loss of genetic information, if not repaired. Non-homologous end joining (NHEJ) and homologous recombination are two major double-strand break repair pathways. SCR7, a DNA ligase IV inhibitor, was recently identified and characterized as a potential anticancer compound. Interestingly, SCR7 was shown to have several applications, owing to its unique property as an NHEJ inhibitor. Here, we focus on three main areas of research in which SCR7 is actively being used, and discuss one of the applications, i.e. genome editing via CRISPR/Cas, in detail. In the past year, different studies have shown that SCR7 significantly increases the efficiency of precise genome editing by inhibiting NHEJ, and favouring the error-free homologous recombination pathway, both in vitro and in vivo. Overall, we discuss the current applications of SCR7 to shed light on the unique property of the small molecule of having distinct applications in normal and cancer cells, when used at different cellular concentrations.
Resumo:
利用RNA减法杂交、差异筛选和5’-RACE等方法从水稻分离到了一花药绒毡层特异表达的基因RA39。Southern 杂交表明,RA39在水稻基因组中是以单拷贝的形式存在的。RT-PCR 结果初步表明,RA39是一水稻花药特异表达的基因。RNA原位杂交进一步表明,RA39主要在水稻花药的绒毡层中表达,而且在小孢子母细胞减数分裂期和四分体时期表达量最高。RA39 cDNA全长1013bp,编码298个氨基酸残基。 RA39 cDNA与数据库中的已知序列没有明显的相似性,由其推测的多肽与核糖体失活蛋白(ribosome-inactivating protein, RIP)的序列相似在19-34%之间。多重序列排列分析结果表明构成RIPs活性位点的5个关键氨基酸残基在RA39中是保守的,在蓖麻毒蛋白中分别为Tyr80、 Tyr123、 Glu177、 Arg180 and Trp211 。利用原核表达系统,通过蛋白质分离和纯化获得了在SDS电泳图谱上为单一条带的纯的RA39蛋白,用兔rRNA作底物进行的酶活性分析证明该蛋白有N-糖基化作用,是一种类型I的核糖体失活蛋白。反义转基因植株的花粉用TTC进行活性染色结果显示其活性明显减弱,成熟的T0代反义转基因植株的结实率明显降低,只有对照的20-60%。这说明,RA39蛋白可能和小孢子母细胞的发育相关。 酵母DMC1是减数分裂过程中同源染色体配对和重组修复所必需的减数分裂特异基因。根据酵母Dmc1和拟南芥AtDmc1的保守区设计简并性引物,通过RT-PCR和RACE等方法,从水稻中分离出了酵母DMC1的同源基因OsDMC1。RT-PCR分析表明,OsDMC1在花中表达量最高,在根中表达量较低,在叶片和幼芽几乎不表达。水稻基因组中有两个拷贝的OsDMC1。OsDmc1蛋白与酵母Dmc1和拟南芥AtDmc1氨基酸一致性分别为53%和81%。 酵母Spo11在减数分裂过程中具有催化DNA双链断裂从而起始同源重组的功能。以酵母Spo11氨基酸序列为探针和现有的数据库通过数据分析,结合RACE技术,克隆了水稻SPO11同源基因OsSPO11-1, OsSPO11-1是一个单拷贝基因,有3个外显子和2个内含子,在转录过程中通过内含子的可变剪切产生4个不同的转录本(OsSPO11-1A、OsSPO11-1B、OsSPO11-1C和OsSPO11-1),其中,OsSPO11-1A是一个未剪切的转录本,OsSPO11-1B包含内含子2,OsSPO11-1C包含内含子1,OsSPO11-1D是一个完全剪切的转录本。这些转录本编码的蛋白有一致的246氨基酸残基的C-端,包含了Spo11/TopVIA家族蛋白共有的5个功能基元,是该家族的新成员。OsSPO11-1A和 OsSPO11-1C在花中优势积累,OsSPO11-1B是花特异的,而OsSPO11-1D在营养器官中优势积累。在花中该基因主要在减数分裂的花粉母细胞和胚曩中表达,在减数分裂期的绒毡层细胞和不同花器官的微管束细胞中也表达。这些结果说明内含子涉及到了OsSPO11-1表达的器官特异性调节,该基因除了参与减数分裂的调节外,在体细胞的发育中可能起重要作用。