95 resultados para Disulfides


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glutathione is the main source of intracellular antioxidant protection in the human erythrocyte and its redox status has frequently been used as a measure of oxidative stress. Extracellular glutathione has been shown to enhance intracellular reduced glutathione levels in some cell types. However, there are conflicting reports in the literature and it remains unclear as to whether erythrocytes can utilise extracellular glutathione to enhance the intracellular free glutathione pool. We have resolved this issue using a C-13-NMR approach. The novel use of L-gamma-glutamyl-L-cysteinyl-[2-C-13] glycine allowed the intra- and extracellular glutathione pools to be distinguished unequivocally, enabling the direct and non-invasive observation over time of the glutathione redox status in both compartments. The intracellular glutathione redox status was measured using H-1 spin-echo NMR, while C-13[H-1-decoupled] NMR experiments were used to measure the extracellular status. Extracellular glutathione was not oxidised in the incubations, and did not affect the intracellular glutathione redox status. Extracellular glutathione also did not affect erythrocyte glucose metabolism, as measured from the lactate-to-pyruvate ratio. The results reported here refute the previously attractive hypothesis that, in glucose-starved erythrocytes, extracellular GSH can increase intracellular GSH concentrations by releasing bound glutathione from mixed disulfides with membrane proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cyclotides are peptides from plants of the Rubiaceae and Violaceae families that have the unusual characteristic of a macrocylic backbone. They are further characterized by their incorporation of a cystine knot in which two disulfides, along with the intervening backbone residues, form a ring through which a third disulfide is threaded. The cyclotides have been found in every Violaceae species screened to date but are apparently present in only a few Rubiaceae species. The selective distribution reported so far raises questions about the evolution of the cyclotides within the plant kingdom. In this study, we use a combined bioinformatics and expression analysis approach to elucidate the evolution and distribution of the cyclotides in the plant kingdom and report the discovery of related sequences widespread in the Poaceae family, including crop plants such as rice ( Oryza sativa), maize ( Zea mays), and wheat ( Triticum aestivum), which carry considerable economic and social importance. The presence of cyclotide-like sequences within these plants suggests that the cyclotides may be derived from an ancestral gene of great antiquity. Quantitative RT-PCR was used to show that two of the discovered cyclotide-like genes from rice and barley ( Hordeum vulgare) have tissue-specific expression patterns.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this work was to elucidate the oxidative folding mechanism of the macrocyclic cystine knot protein MCoTI-II. We aimed to investigate how the six-cysteine residues distributed on the circular backbone of the reduced unfolded peptide recognize their correct partner and join up to form a complex cystine-knotted topology. To answer this question, we studied the oxidative folding of the naturally occurring peptide using a range of spectroscopic methods. For both oxidative folding and reductive unfolding, the same disulfide intermediate species was prevalent and was characterized to be a native-like two-disulfide intermediate in which the Cys(1)-Cys(18) disulfide bond was absent. Overall, the folding pathway of this head-to-tail cyclized protein was found to be similar to that of linear cystine knot proteins from the squash family of trypsin inhibitors. However, the pathway differs in an important way from that of the cyclotide kalata B1, in that the equivalent two-disulfide intermediate in that case is not a direct precursor of the native protein. The size of the embedded ring within the cystine knot motif appears to play a crucial role in the folding pathway. Larger rings contribute to the independence of disulfides and favor an on-pathway native-like intermediate that has a smaller energy barrier to cross to form the native fold. The fact that macrocyclic proteins are readily able to fold to a complex knotted structure in vitro in the absence of chaperones makes them suitable as protein engineering scaffolds that have remarkable stability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most pharmaceutically relevant proteins and many extracellular proteins contain disulfide bonds. Formation of the correct disulfide bonds is essential for stability in almost all cases. Disulfide containing proteins can be rapidly and inexpensively overexpressed in bacteria. However, the overexpressed proteins usually form aggregates inside the bacteria, called inclusion bodies, which contains inactive and non-native protein. To obtain native protein, inclusion bodies need to be isolated and resolubilized, and then the resulting protein refolded in vitro. In vitro protein folding is aided by the addition of a redox buffer, which is composed of a small molecule disulfide and/or a small molecule thiol. The most commonly used redox buffer contains reduced and oxidized glutathione. Recently, aliphatic dithiols and aromatic monothiols have been employed as redox buffers. Aliphatic dithiols improved the yield of native protein as compared to the aliphatic thiol, glutathione. Dithiols mimic the in vivo protein folding catalyst, protein disulfide isomerase, which has two thiols per active site. Furthermore, aromatic monothiols increased the folding rate and yield of lysozyme and RNase A relative to glutathione. By combining the beneficial properties of aliphatic dithiols and aromatic monothiols, aromatic dithiols were designed and were expected to increase in vitro protein folding rates and yields. Aromatic monothiols (1-4) and their corresponding disulfides (5-8), two series of ortho- and para-substituted ethylene glycol dithiols (9-15), and a series of aromatic quaternary ammonium salt dithiols (16-17) were synthesized on a multigram scale. Monothiols and disulfides (1-8) were utilized to fold lysozyme and bovine pancreatic trypsin inhibitor. Dithiols (11-17) were tested for their ability to fold lysozyme. At pH 7.0 and pH 8.0, and high protein concentration (1 mg/mL), aromatic dithiols (16, 17) and a monothiol (3) significantly enhanced the in vitro folding rate and yield of lysozyme relative to the aliphatic thiol, glutathione. Additionally, aromatic dithiols (16, 17) significantly enhance the folding yield as compared to the corresponding aromatic monothiol (3). Thus, the folding rate and yield enhancements achieved in in vitro protein folding at high protein concentration will decrease the volume of renaturation solution required for large scale processes and consequently reduce processing time and cost.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The phytopathogenic bacterium Xylella fastidiosa is the etiological agent of various plant diseases. To survive under oxidative stress imposed by the host, microorganisms express antioxidant proteins, including cysteine-based peroxidases named peroxiredoxins. This work is a comprehensive analysis of the catalysis performed by PrxQ from X. fastidiosa (XfPrxQ) that belongs to a peroxiredoxin class still poorly characterized and previously considered as moderately reactive toward hydroperoxides. Contrary to these assumptions, our competitive kinetics studies have shown that the second-order rate constants of the peroxidase reactions of XfPrxQ with hydrogen peroxide and peroxynitrite are in the order of 107 and 106 M(-1) s(-1), respectively, which are as fast as the most efficient peroxidases. The XfPrxQ disulfides were only slightly reducible by dithiothreitol; therefore, the identification of a thioredoxin system as the probable biological reductant of XfPrxQ was a relevant finding. We also showed by site-specific mutagenesis and mass spectrometry that an intramolecular disulfide bond between Cys-47 and Cys-83 is generated during the catalytic cycle. Furthermore, we elucidated the crystal structure of XfPrxQ C47S in which Ser-47 and Cys-83 lie similar to 12.3 angstrom apart. Therefore, significant conformational changes are required for disulfide bond formation. In fact, circular dichroism data indicated that there was a significant redox-dependent unfolding of alpha-helices, which is probably triggered by the peroxidatic cysteine oxidation. Finally, we proposed a model that takes data from this work as well data as from the literature into account.