996 resultados para Distributed monitoring
Resumo:
Monitoring and enforcement are perhaps the biggest challenges in the design and implementation of environmental policies in developing countries where the actions of many small informal actors cause significant impacts on the ecosystem services and where the transaction costs for the state to regulate them could be enormous. This dissertation studies the potential of innovative institutions based on decentralized coordination and enforcement to induce better environmental outcomes. Such policies have in common that the state plays the role of providing the incentives for organization but the process of compliance happens through decentralized agreements, trust building, signaling and monitoring. I draw from the literatures in collective action, common-pool resources, game-theory and non-point source pollution to develop the instruments proposed here. To test the different conditions in which such policies could be implemented I designed two field-experiments that I conducted with small-scale gold miners in the Colombian Pacific and with users and providers of ecosystem services in the states of Veracruz, Quintana Roo and Yucatan in Mexico. This dissertation is organized in three essays.
The first essay, “Collective Incentives for Cleaner Small-Scale Gold Mining on the Frontier: Experimental Tests of Compliance with Group Incentives given Limited State Monitoring”, examines whether collective incentives, i.e. incentives provided to a group conditional on collective compliance, could “outsource” the required local monitoring, i.e. induce group interactions that extend the reach of the state that can observe only aggregate consequences in the context of small-scale gold mining. I employed a framed field-lab experiment in which the miners make decisions regarding mining intensity. The state sets a collective target for an environmental outcome, verifies compliance and provides a group reward for compliance which is split equally among members. Since the target set by the state transforms the situation into a coordination game, outcomes depend on expectations of what others will do. I conducted this experiment with 640 participants in a mining region of the Colombian Pacific and I examine different levels of policy severity and their ordering. The findings of the experiment suggest that such instruments can induce compliance but this regulation involves tradeoffs. For most severe targets – with rewards just above costs – raise gains if successful but can collapse rapidly and completely. In terms of group interactions, better outcomes are found when severity initially is lower suggesting learning.
The second essay, “Collective Compliance can be Efficient and Inequitable: Impacts of Leaders among Small-Scale Gold Miners in Colombia”, explores the channels through which communication help groups to coordinate in presence of collective incentives and whether the reached solutions are equitable or not. Also in the context of small-scale gold mining in the Colombian Pacific, I test the effect of communication in compliance with a collective environmental target. The results suggest that communication, as expected, helps to solve coordination challenges but still some groups reach agreements involving unequal outcomes. By examining the agreements that took place in each group, I observe that the main coordination mechanism was the presence of leaders that help other group members to clarify the situation. Interestingly, leaders not only helped groups to reach efficiency but also played a key role in equity by defining how the costs of compliance would be distributed among group members.
The third essay, “Creating Local PES Institutions and Increasing Impacts of PES in Mexico: A real-Time Watershed-Level Framed Field Experiment on Coordination and Conditionality”, considers the creation of a local payments for ecosystem services (PES) mechanism as an assurance game that requires the coordination between two groups of participants: upstream and downstream. Based on this assurance interaction, I explore the effect of allowing peer-sanctions on upstream behavior in the functioning of the mechanism. This field-lab experiment was implemented in three real cases of the Mexican Fondos Concurrentes (matching funds) program in the states of Veracruz, Quintana Roo and Yucatan, where 240 real users and 240 real providers of hydrological services were recruited and interacted with each other in real time. The experimental results suggest that initial trust-game behaviors align with participants’ perceptions and predicts baseline giving in assurance game. For upstream providers, i.e. those who get sanctioned, the threat and the use of sanctions increase contributions. Downstream users contribute less when offered the option to sanction – as if that option signal an uncooperative upstream – then the contributions rise in line with the complementarity in payments of the assurance game.
Resumo:
Heterogeneity has to be taken into account when integrating a set of existing information sources into a distributed information system that are nowadays often based on Service- Oriented Architectures (SOA). This is also particularly applicable to distributed services such as event monitoring, which are useful in the context of Event Driven Architectures (EDA) and Complex Event Processing (CEP). Web services deal with this heterogeneity at a technical level, also providing little support for event processing. Our central thesis is that such a fully generic solution cannot provide complete support for event monitoring; instead, source specific semantics such as certain event types or support for certain event monitoring techniques have to be taken into account. Our core result is the design of a configurable event monitoring (Web) service that allows us to trade genericity for the exploitation of source specific characteristics. It thus delivers results for the areas of SOA, Web services, CEP and EDA.
Resumo:
This article discusses event monitoring options for heterogeneous event sources as they are given in nowadays heterogeneous distributed information systems. It follows the central assumption, that a fully generic event monitoring solution cannot provide complete support for event monitoring; instead, event source specific semantics such as certain event types or support for certain event monitoring techniques have to be taken into account. Following from this, the core result of the work presented here is the extension of a configurable event monitoring (Web) service for a variety of event sources. A service approach allows us to trade genericity for the exploitation of source specific characteristics. It thus delivers results for the areas of SOA, Web services, CEP and EDA.
Resumo:
As condições de ambiente térmico e aéreo, no interior de instalações para animais, alteram-se durante o dia, devido à influência do ambiente externo. Para que análises estatísticas e geoestatísticas sejam representativas, uma grande quantidade de pontos distribuídos espacialmente na área da instalação deve ser monitorada. Este trabalho propõe que a variação no tempo das variáveis ambientais de interesse para a produção animal, monitoradas no interior de instalações para animais, pode ser modelada com precisão a partir de registros discretos no tempo. O objetivo deste trabalho foi desenvolver um método numérico para corrigir as variações temporais dessas variáveis ambientais, transformando os dados para que tais observações independam do tempo gasto durante a aferição. O método proposto aproximou os valores registrados com retardos de tempo aos esperados no exato momento de interesse, caso os dados fossem medidos simultaneamente neste momento em todos os pontos distribuídos espacialmente. O modelo de correção numérica para variáveis ambientais foi validado para o parâmetro ambiental temperatura do ar, sendo que os valores corrigidos pelo método não diferiram pelo teste Tukey, a 5% de probabilidade dos valores reais registrados por meio de dataloggers.
Resumo:
Part 14: Interoperability and Integration
Resumo:
To analyze the characteristics and predict the dynamic behaviors of complex systems over time, comprehensive research to enable the development of systems that can intelligently adapt to the evolving conditions and infer new knowledge with algorithms that are not predesigned is crucially needed. This dissertation research studies the integration of the techniques and methodologies resulted from the fields of pattern recognition, intelligent agents, artificial immune systems, and distributed computing platforms, to create technologies that can more accurately describe and control the dynamics of real-world complex systems. The need for such technologies is emerging in manufacturing, transportation, hazard mitigation, weather and climate prediction, homeland security, and emergency response. Motivated by the ability of mobile agents to dynamically incorporate additional computational and control algorithms into executing applications, mobile agent technology is employed in this research for the adaptive sensing and monitoring in a wireless sensor network. Mobile agents are software components that can travel from one computing platform to another in a network and carry programs and data states that are needed for performing the assigned tasks. To support the generation, migration, communication, and management of mobile monitoring agents, an embeddable mobile agent system (Mobile-C) is integrated with sensor nodes. Mobile monitoring agents visit distributed sensor nodes, read real-time sensor data, and perform anomaly detection using the equipped pattern recognition algorithms. The optimal control of agents is achieved by mimicking the adaptive immune response and the application of multi-objective optimization algorithms. The mobile agent approach provides potential to reduce the communication load and energy consumption in monitoring networks. The major research work of this dissertation project includes: (1) studying effective feature extraction methods for time series measurement data; (2) investigating the impact of the feature extraction methods and dissimilarity measures on the performance of pattern recognition; (3) researching the effects of environmental factors on the performance of pattern recognition; (4) integrating an embeddable mobile agent system with wireless sensor nodes; (5) optimizing agent generation and distribution using artificial immune system concept and multi-objective algorithms; (6) applying mobile agent technology and pattern recognition algorithms for adaptive structural health monitoring and driving cycle pattern recognition; (7) developing a web-based monitoring network to enable the visualization and analysis of real-time sensor data remotely. Techniques and algorithms developed in this dissertation project will contribute to research advances in networked distributed systems operating under changing environments.
Resumo:
Sustainability and responsible environmental behaviour constitute a vital premise in the development of the humankind. In fact, during last decades, the global energetic scenario is evolving towards a scheme with increasing relevance of Renewable Energy Sources (RES) like photovoltaic, wind, biomass and hydrogen. Furthermore, hydrogen is an energy carrier which constitutes a mean for long-term energy storage. The integration of hydrogen with local RES contributes to distributed power generation and early introduction of hydrogen economy. Intermittent nature of many of RES, for instance solar and wind sources, impose the development of a management and control strategy to overcome this drawback. This strategy is responsible of providing a reliable, stable and efficient operation of the system. To implement such strategy, a monitoring system is required.The present paper aims to contribute to experimentally validate LabVIEW as valuable tool to develop monitoring platforms in the field of RES-based facilities. To this aim, a set of real systems successfully monitored is exposed.
Resumo:
A densely built environment is a complex system of infrastructure, nature, and people closely interconnected and interacting. Vehicles, public transport, weather action, and sports activities constitute a manifold set of excitation and degradation sources for civil structures. In this context, operators should consider different factors in a holistic approach for assessing the structural health state. Vibration-based structural health monitoring (SHM) has demonstrated great potential as a decision-supporting tool to schedule maintenance interventions. However, most excitation sources are considered an issue for practical SHM applications since traditional methods are typically based on strict assumptions on input stationarity. Last-generation low-cost sensors present limitations related to a modest sensitivity and high noise floor compared to traditional instrumentation. If these devices are used for SHM in urban scenarios, short vibration recordings collected during high-intensity events and vehicle passage may be the only available datasets with a sufficient signal-to-noise ratio. While researchers have spent efforts to mitigate the effects of short-term phenomena in vibration-based SHM, the ultimate goal of this thesis is to exploit them and obtain valuable information on the structural health state. First, this thesis proposes strategies and algorithms for smart sensors operating individually or in a distributed computing framework to identify damage-sensitive features based on instantaneous modal parameters and influence lines. Ordinary traffic and people activities become essential sources of excitation, while human-powered vehicles, instrumented with smartphones, take the role of roving sensors in crowdsourced monitoring strategies. The technical and computational apparatus is optimized using in-memory computing technologies. Moreover, identifying additional local features can be particularly useful to support the damage assessment of complex structures. Thereby, smart coatings are studied to enable the self-sensing properties of ordinary structural elements. In this context, a machine-learning-aided tomography method is proposed to interpret the data provided by a nanocomposite paint interrogated electrically.
Resumo:
In recent years, composite materials have revolutionized the design of many structures. Their superior mechanical properties and light weight make composites convenient over traditional metal structures for many applications. However, composite materials are susceptible to complex and challenging to predict damage behaviors due to their anisotropy nature. Therefore, structural Health Monitoring (SHM) can be a valuable tool to assess the damage and understand the physics underneath. Distributed Optical Fiber Sensors (DOFS) can be used to monitor several types of damage in composites. However, their implementation outside academia is still unsatisfactory. One of the hindrances is the lack of a rigorous methodology for uncertainty quantification, which is essential for the performance assessment of the monitoring system. The concept of Probability of Detection (POD) must function as the guiding light in this process. However, precautions must be taken since this tool was established for Non-Destructive Evaluation (NDE) rather than Structural Health Monitoring (SHM). In addition, although DOFS have been the object of numerous studies, a well-established POD methodology for their performance assessment is still missing. This thesis aims to develop a methodology to produce POD curves for DOFS in composite materials. The problem is analyzed considering several critical points, such as the strain transfer characterizing the DOFS and the development of an experimental and model-assisted methodology to understand the parameters that affect the DOFS performance.
Resumo:
With the aim of heading towards a more sustainable future, there has been a noticeable increase in the installation of Renewable Energy Sources (RES) in power systems in the latest years. Besides the evident environmental benefits, RES pose several technological challenges in terms of scheduling, operation, and control of transmission and distribution power networks. Therefore, it raised the necessity of developing smart grids, relying on suitable distributed measurement infrastructure, for instance, based on Phasor Measurement Units (PMUs). Not only are such devices able to estimate a phasor, but they can also provide time information which is essential for real-time monitoring. This Thesis falls within this context by analyzing the uncertainty requirements of PMUs in distribution and transmission applications. Concerning the latter, the reliability of PMU measurements during severe power system events is examined, whereas for the first, typical configurations of distribution networks are studied for the development of target uncertainties. The second part of the Thesis, instead, is dedicated to the application of PMUs in low-inertia power grids. The replacement of traditional synchronous machines with inertia-less RES is progressively reducing the overall system inertia, resulting in faster and more severe events. In this scenario, PMUs may play a vital role in spite of the fact that no standard requirements nor target uncertainties are yet available. This Thesis deeply investigates PMU-based applications, by proposing a new inertia index relying only on local measurements and evaluating their reliability in low-inertia scenarios. It also develops possible uncertainty intervals based on the electrical instrumentation currently used in power systems and assesses the interoperability with other devices before and after contingency events.
Resumo:
The main objective of my thesis work is to exploit the Google native and open-source platform Kubeflow, specifically using Kubeflow pipelines, to execute a Federated Learning scalable ML process in a 5G-like and simplified test architecture hosting a Kubernetes cluster and apply the largely adopted FedAVG algorithm and FedProx its optimization empowered by the ML platform ‘s abilities to ease the development and production cycle of this specific FL process. FL algorithms are more are and more promising and adopted both in Cloud application development and 5G communication enhancement through data coming from the monitoring of the underlying telco infrastructure and execution of training and data aggregation at edge nodes to optimize the global model of the algorithm ( that could be used for example for resource provisioning to reach an agreed QoS for the underlying network slice) and after a study and a research over the available papers and scientific articles related to FL with the help of the CTTC that suggests me to study and use Kubeflow to bear the algorithm we found out that this approach for the whole FL cycle deployment was not documented and may be interesting to investigate more in depth. This study may lead to prove the efficiency of the Kubeflow platform itself for this need of development of new FL algorithms that will support new Applications and especially test the FedAVG algorithm performances in a simulated client to cloud communication using a MNIST dataset for FL as benchmark.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Increased tourist activity in coastal regions demands management strategies to reduce impacts on rocky shores. The highly populated coastal areas in southeastern Brazil are an example of degradation caused by development of industry and tourism. Among different shore impacts, trampling has been intensively studied, and may represent a significant source of stress for intertidal fauna. A randomised blocks design was applied to experimentally study the effects of two different trampling intensities on richness, diversity, density and biomass of the rocky shore fauna of Obuseiro beach, Guarujá, southeastern Brazil. Blocks were distributed in two portions of the intertidal zone, dominated respectively by Chthamalus bisinuatus (Cirripedia) and Isognomon bicolor (Bivalvia). Blocks were trampled over three months, simulating the vacation period in Brazil and were monitored for the following nine months. Results indicate that Chthamalus bisinuatus is vulnerable to trampling impacts. Richness, diversity and turn-over index tended to be higher in trampled plots four months after trampling ceased. In general, results agree with previous trampling studies, suggesting that even low intensities of trampling may cause some impact on intertidal communities. Management strategies should include isolation of sensitive areas, construction of boardwalks, visitor education and monitoring programmes. In Brazil, additional data obtained from experimental studies are necessary in order to achieve a better understanding of trampling impacts on rocky shore communities.
Resumo:
The study objective was to evaluate the feasibility of interviews by cell phone as a complement to interviews by landline to estimate risk and protection factors for chronic non-communicable diseases. Adult cell phone users were evaluated by random digit dialing. Questions asked were: age, sex, education, race, marital status, ownership of landline and cell phones, health condition, weight and height, medical diagnosis of hypertension and diabetes, physical activity, diet, binge drinking and smoking. The estimates were calculated using post-stratification weights. The cell phone interview system showed a reduced capacity to reach elderly and low educated populations. The estimates of the risk and protection factors for chronic non-communicable diseases in cell phone interviews were equal to the estimates obtained by landline phone. Eligibility, success and refusal rates using the cell phone system were lower than those of the landline system, but loss and cost were much higher, suggesting it is unsatisfactory as a complementary method in such a context.
Resumo:
The Healthy Cities and Agenda 21 programs improve living and health conditions and affect social and economic determinants of health. The Millennium Development Goals (MDG) indicators can be used to assess the impact of social agendas. A data search was carried out for the period 1997 to 2006 to obtain 48 indicators proposed by the United Nations and a further 74 proposed by the technical group for the MDGin Brazil. There is a scarcity of studies concerned with assessing the MDG at the municipal level. Data from Brazilian health information systems are not always consistent or accurate for municipalities. The lack of availability and reliable data led to the substitution of some indicators. The information systems did not always provide annual data; national household surveys could not be disaggregated at the municipal level and there were also modifications on conceptual definitions over time. As a result, the project created an alternative list with 29 indicators. MDG monitoring at the local community can be important to measure the performance of actions toward improvements in quality of life and social iniquities.