989 resultados para Diagramma E-R redattore ER modello relazionale SharpER


Relevância:

30.00% 30.00%

Publicador:

Resumo:

By means of IR spectroscopy, we determined the teeth ablation mechanism by an Er:YAG laser oscillating at 2.94 mum. Ejected dental material, ablated by the laser from human teeth, was deposited on an IR window and the absorption spectra were measured in the range 2500-20,000 nm. Sound teeth were used, and the corresponding film spectra were compared to spectra obtained by traditional methods. The films spectra obtained do not differ appreciably from those obtained by the traditional method for sound teeth, indicating that the material ejected by an Er:YAG represents the tooth condition.The obtained results confirm that a spectroscopic analysis of a tooth treated with an Er:YAG laser can be done measuring the absorbance of a film composed of ejected material without the need to slice it. In addition, we could determine that the laser absorption occurs mainly by the interstitial water, and the temperature elevation of the ejected material does not exceed 60degreesC. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The local environment of Er3+ ions in microporous titanosilicate ETS-10 and in synthetic narsarsukite and glassy materials obtained by calcination of ETS-10 has been investigated by EXAFS, Raman and photoluminescence spectroscopies. Er L-III-edge EXAFS studies of Er3+-doped ETS-10 support the view that the exchanged Er3+ ions reside close to the (negatively charged) TiO6 octahedra. In ETS-10, Er3+ is partially bonded to framework oxygen atoms and hydration water molecules. The Er...Ti distance (3.3 Angstrom) is similar to the Na...Ti distances (3.15-3.20 Angstrom) reported previously for Na-ETS-10. Although the exact location of the ErO6 units within the host structure of Er3+-doped synthetic narsarsukite is still an open question, it is most likely that Er3+ substitutes Ti4+ rather than Na+ ions. EXAFS spectroscopy indicates that no significant clustering of erbium atoms occurs in the titanosilicate samples studied. Evidence for the insertion of Er3+ ions in the framework of narsarsukite has been obtained by Raman spectroscopy. This is indicated by the increasing full-width at half-maximum (FWHM) of the 775 cm(-1) peak and the increasing intensity of the anatase peaks as the erbium content increases. In addition, as the narsarsukite Er3+ content increases a band at ca. 515 cm(-1) firstly broadens and subsequently a new peak appears at ca. 507 cm(-1).Er3+-doped narsarsukite exhibits a characteristic local vibrational frequency, (h) over bar omega ca. 330 cm(-1), with an electron-phonon coupling, g ca. 0.2, which constitutes additional evidence for framework Er3+ insertion. The number of lines in the infrared emission spectrum of synthetic narsarsukite indicates the presence of two optically-active erbium centres with very similar local environments and an average I-4(13/2) lifetime of 7.8 +/- 0.2 ms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study was conducted to analyze the ablation rate and micromorphological aspects of microcavities in enamel and dentin of primary and permanent teeth using a Er:YAG laser system. Micromorphological evaluation has been performed in terms of permanent teeth; however, little information about Er: YAG laser interaction with primary teeth can be found in the literature. Because children have been the most beneficiary patients with laser therapy in our offices, it is extremely necessary to compare the effects of this kind of laser system on the enamel and dentin of permanent and primary teeth. In this study, we used eleven intact primary anterior exfoliated teeth and six extracted permanent molar teeth. We used a commercial laser system: a Er: YAG Twin Light laser system (Fotona Medical Lasers, Slovenia) at 2940 nm, changing average energy levels per pulse ( 100, 200, 300, and 400 mJ) producing 48 microcavities in enamel and dentin of primary and permanent teeth. Primary teeth are more easily ablated than are permanent teeth, when related to enamel or dentin. However, while this laser system is capable of slowly revealing the enamel's microstructure, in dentin only the lowest laser energies permit this kind of observation, more easily decomposing the original tissue aspect, when related to primary or permanent teeth. Statistically, the only different factor at the 5% level was an energy per pulse of 400 mJ, confirming the results found in SEM. Our results showed that dentin in both primary and permanent teeth is less resistant to Er: YAG laser ablation; this fact is easily observed under SEM observation and through the ablation rate evaluation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Erbium-activated silica-based planar waveguides were prepared by three different technological routes: RF-sputtering, sol-gel and ion exchange. Various parameters of preparation were varied in order to optimize the waveguides for operation in the NIR region. Particular attention was devoted to the minimization of the losses and the increase of the luminescence efficiency of the metastable I-4(13/2) state of the Er3+ ion. Waveguide properties were determined by m-line spectroscopy and loss measurements. Waveguide Raman and luminescence spectroscopy were used to obtain information about the structure of the prepared films and about the dynamical processes related to the luminescence of the Er3+ ions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sodium phosphoniobate glasses with the composition (mol%) 75NaPO(3)-25Nb(2)O(5) and containing 2 mol% Yb3+ and x mol% Er3+ (0.01 <= x <= 2) were prepared using the conventional melting/casting process. Er3+ emission at 1.5 mu m and infrared-to-visible upconversion emission, upon excitation at 976 nm, are evaluated as a function of the Er3+ concentration. For the lowest Er3+ content, 1.5 mu m emission quantum efficiency was 90%. Increasing the Er3+ concentration up to 2 mol%, the emission quantum efficiency was observed to decrease to 37% due to concentration quenching. The green and red upconversion emission intensity ratio was studied as a function of Yb3+ co-doping and the Er3+-Er3+ energy transfer processes. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: In vitro analysis of caries resistance of dental enamel under caries simulation after irradiation with Er:YAG laser. Background Data: More susceptible to caries development spots at adjacent hard tissues from cavity preparations of dental tissues using burrs or lasers are quite common. Methods: Thirteen caries-free third permanent human molars were distributed as follows: G1: sound control and caries control; G2: Er:YAG 100, 200, 300, or 400 mJ/ 10 Hz/ 3 sec.; G3: the same parameters of G2 followed by artificial caries simulation, through dynamic model of demineralization and remineralization (DE/RE). Caries resistance analysis was evaluated through scanning electron microscopy (SEM) and Ca/P rate (X-Rays spectroscopy - EDX). Results: Photomicrographs showed that the Er:YAG laser created craters with rough aspect which became more evident as the energy per pulse was increased, but without change of regular morphology of enamel prisms. Significant statistical changes among the irradiated and control groups was observed considering the Ca/P ratio. Conclusion: Irradiated groups showed higher caries resistance than control groups. However, it is not possible to affirm that the enamel surface accidental irradiation could be a benefit to caries resistance for other situations can be considered, as biofilm deposit, which could increase the caries susceptibility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

70SiO(2)-30HfO(2) planar waveguides, doped with Er(3+) concentrations ranging from 0.3 to 1 mol %, were prepared by sol-gel route, using dip-coating deposition on silica glass substrates. The waveguides show high densification degree, effective intermingling of the two components of the film, and uniform surface morphology. Propagation losses of about 1 dB/cm were measured at 632.8 nm. When pumped with 987 or 514.5 nm continuous-wave laser light, the waveguides show the (4)I(13/2)-->(4)I(15/2) emission band with a bandwidth of 48 nm. The spectral features are found independent both on erbium content and excitation wavelength. The (4)I(13/2) level decay curves presented a single-exponential profile, with a lifetime between 2.9 and 5.0 ms, depending on the erbium concentration. (C) 2002 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: the purpose of this study is to make use of scanning electron microscopy in order to comparatively analyze the morphological alterations to human and bovine enamel and dentin. Earlier data: Many a morphological study involving Er:YAG laser can be found in the literature. Still, not a single study comparing the effects of this infrared laser in human and bovine teeth has been reported. Materials and Methods: Thirty-two slices of human and bovine enamel and dentin were evenly divided into four groups. With the exception of the control group, the samples were irradiated with Er:YAG laser, focused at a distance of 12 mm and a 10-Hz frequency, with 150, 250, and 350 mJ of output energy per pulse for 10 seconds. After irradiation all specimens were observed under a scanning electron microscope. Results: There was practically no morphological difference for those samples that underwent 150 mJ/pulse irradiation. The dentin exposed to 250 mJ had a few open dentinal tubules. These were seen in enamel after a 350 mJ irradiation, in which the energy was able to reach the dentin. Conclusions: the breadth of this study allows us to state that the pattern between the species grew more heterogenous as the energy density was increased and that irradiation with 150 mJ/pulse resulted in greater likeness in human and bovine enamel and dentin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective The aim of this study was to compare intrapulpal temperature increases produced by a high-speed high-torque (speed-increasing) handpiece, a high-speed low-torque handpiece (air-turbine) and an Er: YAG (Erbium: Yttrium-Aluminum-Garnet) laser. Subject and methods Thirty bovine incisors were reduced to a dentine thickness of 2.0 mm. Class V preparations were prepared to a depth of 1.5 mm, measured with a caliper or by a mark on the burs. A thermocouple was placed inside the pulp chamber to determine temperature increases (C). Analysis was performed on the following groups (n = 10) treated with: G1, low-torque handpiece; G2, high-torque handpiece; and G3, Er: YAG laser (2.94 mu m at 250 mJ/4 Hz), all with water cooling. The temperature increases were recorded with a computer linked to the thermocouples. Results The data were submitted to ANOVA and Tukey statistical test. The average temperature rises were: 1.92 +/- 0.80 degrees C for G1, 1.34 +/- 0.86 degrees C for G2, and 0.75 +/- 0.39 degrees C for G3. There were significant statistical differences among the groups (p = 0.095). All the groups tested did not have a change of temperature that exceeds the threshold of 5.5 degrees C. Conclusion Temperature response to the low and high torque handpieces seemed to be similar, however the Er: YAG laser generated a lower temperature rise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phosphoniobate glasses with composition (mol%) (100-x) NaPO(3)-xNb(2)O(5) ( x varying from 11 to 33) were prepared and characterized by means of thermal analysis, Fourier transform infrared spectroscopy, Raman scattering and (31)P nuclear magnetic resonance. The addition of Nb(2)O(5) to the polyphosphate base glass leads to depolymerization of the metaphosphate structure. Different colors were observed and assigned as indicating the presence of Nb(4+) ions, as confirmed by electron paramagnetic resonance measurements. The color was observed to depend on the glass composition and melting temperature as well. Er(3+) containing samples were also prepared. Strong emission in the 1550 nm region was observed. The Er(3+4)I(15/2) emission quantum efficiency was observed to be 90% and the quenching concentration was observed to be 1.1 mol%( 1.45 x 10(20) ions cm(-3)). Planar waveguides were prepared by Na(+)-K(+)-Ag(+) ion exchange with Er(3+) containing samples. Optical parameters of the waveguides were measured at 632.8, 543.5 and 1550 nm by the prism coupling technique as a function of the ion exchange time and Ag(+) concentration. The optimized planar waveguides show a diffusion depth of 5.9 mu m and one propagating mode at 1550 nm.