877 resultados para Decomposition algorithms
Resumo:
Important research effort has been devoted to the topic of optimal planning of distribution systems. The non linear nature of the system, the need to consider a large number of scenarios and the increasing necessity to deal with uncertainties make optimal planning in distribution systems a difficult task. Heuristic techniques approaches have been proposed to deal with these issues, overcoming some of the inherent difficulties of classic methodologies. This paper considers several methodologies used to address planning problems of electrical power distribution networks, namely mixedinteger linear programming (MILP), ant colony algorithms (AC), genetic algorithms (GA), tabu search (TS), branch exchange (BE), simulated annealing (SA) and the Bender´s decomposition deterministic non-linear optimization technique (BD). Adequacy of theses techniques to deal with uncertainties is discussed. The behaviour of each optimization technique is compared from the point of view of the obtained solution and of the methodology performance. The paper presents results of the application of these optimization techniques to a real case of a 10-kV electrical distribution system with 201 nodes that feeds an urban area.
Resumo:
This paper presents a new and efficient methodology for distribution network reconfiguration integrated with optimal power flow (OPF) based on a Benders decomposition approach. The objective minimizes power losses, balancing load among feeders and subject to constraints: capacity limit of branches, minimum and maximum power limits of substations or distributed generators, minimum deviation of bus voltages and radial optimal operation of networks. The Generalized Benders decomposition algorithm is applied to solve the problem. The formulation can be embedded under two stages; the first one is the Master problem and is formulated as a mixed integer non-linear programming problem. This stage determines the radial topology of the distribution network. The second stage is the Slave problem and is formulated as a non-linear programming problem. This stage is used to determine the feasibility of the Master problem solution by means of an OPF and provides information to formulate the linear Benders cuts that connect both problems. The model is programmed in GAMS. The effectiveness of the proposal is demonstrated through two examples extracted from the literature.
Resumo:
This work aims at investigating the impact of treating breast cancer using different radiation therapy (RT) techniques – forwardly-planned intensity-modulated, f-IMRT, inversely-planned IMRT and dynamic conformal arc (DCART) RT – and their effects on the whole-breast irradiation and in the undesirable irradiation of the surrounding healthy tissues. Two algorithms of iPlan BrainLAB treatment planning system were compared: Pencil Beam Convolution (PBC) and commercial Monte Carlo (iMC). Seven left-sided breast patients submitted to breast-conserving surgery were enrolled in the study. For each patient, four RT techniques – f-IMRT, IMRT using 2-fields and 5-fields (IMRT2 and IMRT5, respectively) and DCART – were applied. The dose distributions in the planned target volume (PTV) and the dose to the organs at risk (OAR) were compared analyzing dose–volume histograms; further statistical analysis was performed using IBM SPSS v20 software. For PBC, all techniques provided adequate coverage of the PTV. However, statistically significant dose differences were observed between the techniques, in the PTV, OAR and also in the pattern of dose distribution spreading into normal tissues. IMRT5 and DCART spread low doses into greater volumes of normal tissue, right breast, right lung and heart than tangential techniques. However, IMRT5 plans improved distributions for the PTV, exhibiting better conformity and homogeneity in target and reduced high dose percentages in ipsilateral OAR. DCART did not present advantages over any of the techniques investigated. Differences were also found comparing the calculation algorithms: PBC estimated higher doses for the PTV, ipsilateral lung and heart than the iMC algorithm predicted.
Resumo:
Introduction: Image resizing is a normal feature incorporated into the Nuclear Medicine digital imaging. Upsampling is done by manufacturers to adequately fit more the acquired images on the display screen and it is applied when there is a need to increase - or decrease - the total number of pixels. This paper pretends to compare the “hqnx” and the “nxSaI” magnification algorithms with two interpolation algorithms – “nearest neighbor” and “bicubic interpolation” – in the image upsampling operations. Material and Methods: Three distinct Nuclear Medicine images were enlarged 2 and 4 times with the different digital image resizing algorithms (nearest neighbor, bicubic interpolation nxSaI and hqnx). To evaluate the pixel’s changes between the different output images, 3D whole image plot profiles and surface plots were used as an addition to the visual approach in the 4x upsampled images. Results: In the 2x enlarged images the visual differences were not so noteworthy. Although, it was clearly noticed that bicubic interpolation presented the best results. In the 4x enlarged images the differences were significant, with the bicubic interpolated images presenting the best results. Hqnx resized images presented better quality than 4xSaI and nearest neighbor interpolated images, however, its intense “halo effect” affects greatly the definition and boundaries of the image contents. Conclusion: The hqnx and the nxSaI algorithms were designed for images with clear edges and so its use in Nuclear Medicine images is obviously inadequate. Bicubic interpolation seems, from the algorithms studied, the most suitable and its each day wider applications seem to show it, being assumed as a multi-image type efficient algorithm.
Resumo:
Introduction: A major focus of data mining process - especially machine learning researches - is to automatically learn to recognize complex patterns and help to take the adequate decisions strictly based on the acquired data. Since imaging techniques like MPI – Myocardial Perfusion Imaging on Nuclear Cardiology, can implicate a huge part of the daily workflow and generate gigabytes of data, there could be advantages on Computerized Analysis of data over Human Analysis: shorter time, homogeneity and consistency, automatic recording of analysis results, relatively inexpensive, etc.Objectives: The aim of this study relates with the evaluation of the efficacy of this methodology on the evaluation of MPI Stress studies and the process of decision taking concerning the continuation – or not – of the evaluation of each patient. It has been pursued has an objective to automatically classify a patient test in one of three groups: “Positive”, “Negative” and “Indeterminate”. “Positive” would directly follow to the Rest test part of the exam, the “Negative” would be directly exempted from continuation and only the “Indeterminate” group would deserve the clinician analysis, so allowing economy of clinician’s effort, increasing workflow fluidity at the technologist’s level and probably sparing time to patients. Methods: WEKA v3.6.2 open source software was used to make a comparative analysis of three WEKA algorithms (“OneR”, “J48” and “Naïve Bayes”) - on a retrospective study using the comparison with correspondent clinical results as reference, signed by nuclear cardiologist experts - on “SPECT Heart Dataset”, available on University of California – Irvine, at the Machine Learning Repository. For evaluation purposes, criteria as “Precision”, “Incorrectly Classified Instances” and “Receiver Operating Characteristics (ROC) Areas” were considered. Results: The interpretation of the data suggests that the Naïve Bayes algorithm has the best performance among the three previously selected algorithms. Conclusions: It is believed - and apparently supported by the findings - that machine learning algorithms could significantly assist, at an intermediary level, on the analysis of scintigraphic data obtained on MPI, namely after Stress acquisition, so eventually increasing efficiency of the entire system and potentially easing both roles of Technologists and Nuclear Cardiologists. In the actual continuation of this study, it is planned to use more patient information and significantly increase the population under study, in order to allow improving system accuracy.
Resumo:
Signal subspace identification is a crucial first step in many hyperspectral processing algorithms such as target detection, change detection, classification, and unmixing. The identification of this subspace enables a correct dimensionality reduction, yielding gains in algorithm performance and complexity and in data storage. This paper introduces a new minimum mean square error-based approach to infer the signal subspace in hyperspectral imagery. The method, which is termed hyperspectral signal identification by minimum error, is eigen decomposition based, unsupervised, and fully automatic (i.e., it does not depend on any tuning parameters). It first estimates the signal and noise correlation matrices and then selects the subset of eigenvalues that best represents the signal subspace in the least squared error sense. State-of-the-art performance of the proposed method is illustrated by using simulated and real hyperspectral images.
Resumo:
We perform a comparison between the fractional iteration and decomposition methods applied to the wave equation on Cantor set. The operators are taken in the local sense. The results illustrate the significant features of the two methods which are both very effective and straightforward for solving the differential equations with local fractional derivative.
Resumo:
The paper formulates a genetic algorithm that evolves two types of objects in a plane. The fitness function promotes a relationship between the objects that is optimal when some kind of interface between them occurs. Furthermore, the algorithm adopts an hexagonal tessellation of the two-dimensional space for promoting an efficient method of the neighbour modelling. The genetic algorithm produces special patterns with resemblances to those revealed in percolation phenomena or in the symbiosis found in lichens. Besides the analysis of the spacial layout, a modelling of the time evolution is performed by adopting a distance measure and the modelling in the Fourier domain in the perspective of fractional calculus. The results reveal a consistent, and easy to interpret, set of model parameters for distinct operating conditions.
Resumo:
To avoid additional hardware deployment, indoor localization systems have to be designed in such a way that they rely on existing infrastructure only. Besides the processing of measurements between nodes, localization procedure can include the information of all available environment information. In order to enhance the performance of Wi-Fi based localization systems, the innovative solution presented in this paper considers also the negative information. An indoor tracking method inspired by Kalman filtering is also proposed.
Resumo:
Consider the problem of assigning real-time tasks on a heterogeneous multiprocessor platform comprising two different types of processors — such a platform is referred to as two-type platform. We present two linearithmic timecomplexity algorithms, SA and SA-P, each providing the follow- ing guarantee. For a given two-type platform and a given task set, if there exists a feasible task-to-processor-type assignment such that tasks can be scheduled to meet deadlines by allowing them to migrate only between processors of the same type, then (i) using SA, it is guaranteed to find such a feasible task-to- processor-type assignment where the same restriction on task migration applies but given a platform in which processors are 1+α/2 times faster and (ii) SA-P succeeds in finding 2 a feasible task-to-processor assignment where tasks are not allowed to migrate between processors but given a platform in which processors are 1+α/times faster, where 0<α≤1. The parameter α is a property of the task set — it is the maximum utilization of any task which is less than or equal to 1.
Resumo:
In this paper we discuss challenges and design principles of an implementation of slot-based tasksplitting algorithms into the Linux 2.6.34 version. We show that this kernel version is provided with the required features for implementing such scheduling algorithms. We show that the real behavior of the scheduling algorithm is very close to the theoretical. We run and discuss experiments on 4-core and 24-core machines.
Resumo:
Multiprocessors, particularly in the form of multicores, are becoming standard building blocks for executing reliable software. But their use for applications with hard real-time requirements is non-trivial. Well-known realtime scheduling algorithms in the uniprocessor context (Rate-Monotonic [1] or Earliest-Deadline-First [1]) do not perform well on multiprocessors. For this reason the scientific community in the area of real-time systems has produced new algorithms specifically for multiprocessors. In the meanwhile, a proposal [2] exists for extending the Ada language with new basic constructs which can be used for implementing new algorithms for real-time scheduling; the family of task splitting algorithms is one of them which was emphasized in the proposal [2]. Consequently, assessing whether existing task splitting multiprocessor scheduling algorithms can be implemented with these constructs is paramount. In this paper we present a list of state-of-art task-splitting multiprocessor scheduling algorithms and, for each of them, we present detailed Ada code that uses the new constructs.
Resumo:
A MATLAB/SIMULINK-based simulator was employed for studies concerning the control of baker’s yeast fed-batch fermentation. Four control algorithms were implemented and compared: the classical PID control, two discrete versions- modified velocity and position algorithms, and a fuzzy law. The simulation package was seen to be an efficient tool for the simulation and tests of control strategies of the nonlinear process.