896 resultados para Decision-support tools
Resumo:
[Abstract]
Resumo:
The objective of the dissertation is to increase understanding and knowledge in the field where group decision support system (GDSS) and technology selection research overlap in the strategic sense. The purpose is to develop pragmatic, unique and competent management practices and processes for strategic technology assessment and selection from the whole company's point of view. The combination of the GDSS and technology selection is approached from the points of view of the core competence concept, the lead user -method, and different technology types. In this research the aim is to find out how the GDSS contributes to the technology selection process, what aspects should be considered when selecting technologies to be developed or acquired, and what advantages and restrictions the GDSS has in the selection processes. These research objectives are discussed on the basis of experiences and findings in real life selection meetings. The research has been mainly carried outwith constructive, case study research methods. The study contributes novel ideas to the present knowledge and prior literature on the GDSS and technology selection arena. Academic and pragmatic research has been conducted in four areas: 1) the potential benefits of the group support system with the lead user -method,where the need assessment process is positioned as information gathering for the selection of wireless technology development projects; 2) integrated technology selection and core competencies management processes both in theory and in practice; 3) potential benefits of the group decision support system in the technology selection processes of different technology types; and 4) linkages between technology selection and R&D project selection in innovative product development networks. New type of knowledge and understanding has been created on the practical utilization of the GDSS in technology selection decisions. The study demonstrates that technology selection requires close cooperation between differentdepartments, functions, and strategic business units in order to gather the best knowledge for the decision making. The GDSS is proved to be an effective way to promote communication and co-operation between the selectors. The constructs developed in this study have been tested in many industry fields, for example in information and communication, forest, telecommunication, metal, software, and miscellaneous industries, as well as in non-profit organizations. The pragmatic results in these organizations are some of the most relevant proofs that confirm the scientific contribution of the study, according to the principles of the constructive research approach.
Resumo:
The evaluation of investments in advanced technology is one of the most important decision making tasks. The importance is even more pronounced considering the huge budget concerning the strategic, economic and analytic justification in order to shorten design and development time. Choosing the most appropriate technology requires an accurate and reliable system that can lead the decision makers to obtain such a complicated task. Currently, several Information and Communication Technologies (ICTs) manufacturers that design global products are seeking local firms to act as their sales and services representatives (called distributors) to the end user. At the same time, the end user or customer is also searching for the best possible deal for their investment in ICT's projects. Therefore, the objective of this research is to present a holistic decision support system to assist the decision maker in Small and Medium Enterprises (SMEs) - working either as individual decision makers or in a group - in the evaluation of the investment to become an ICT's distributor or an ICT's end user. The model is composed of the Delphi/MAH (Maximising Agreement Heuristic) Analysis, a well-known quantitative method in Group Support System (GSS), which is applied to gather the average ranking data from amongst Decision Makers (DMs). After that the Analytic Network Process (ANP) analysis is brought in to analyse holistically: it performs quantitative and qualitative analysis simultaneously. The illustrative data are obtained from industrial entrepreneurs by using the Group Support System (GSS) laboratory facilities at Lappeenranta University of Technology, Finland and in Thailand. The result of the research, which is currently implemented in Thailand, can provide benefits to the industry in the evaluation of becoming an ICT's distributor or an ICT's end user, particularly in the assessment of the Enterprise Resource Planning (ERP) programme. After the model is put to test with an in-depth collaboration with industrial entrepreneurs in Finland and Thailand, the sensitivity analysis is also performed to validate the robustness of the model. The contribution of this research is in developing a new approach and the Delphi/MAH software to obtain an analysis of the value of becoming an ERP distributor or end user that is flexible and applicable to entrepreneurs, who are looking for the most appropriate investment to become an ERP distributor or end user. The main advantage of this research over others is that the model can deliver the value of becoming an ERP distributor or end user in a single number which makes it easier for DMs to choose the most appropriate ERP vendor. The associated advantage is that the model can include qualitative data as well as quantitative data, as the results from using quantitative data alone can be misleading and inadequate. There is a need to utilise quantitative and qualitative analysis together, as can be seen from the case studies.
Resumo:
This paper presents the current state and development of a prototype web-GIS (Geographic Information System) decision support platform intended for application in natural hazards and risk management, mainly for floods and landslides. This web platform uses open-source geospatial software and technologies, particularly the Boundless (formerly OpenGeo) framework and its client side software development kit (SDK). The main purpose of the platform is to assist the experts and stakeholders in the decision-making process for evaluation and selection of different risk management strategies through an interactive participation approach, integrating web-GIS interface with decision support tool based on a compromise programming approach. The access rights and functionality of the platform are varied depending on the roles and responsibilities of stakeholders in managing the risk. The application of the prototype platform is demonstrated based on an example case study site: Malborghetto Valbruna municipality of North-Eastern Italy where flash floods and landslides are frequent with major events having occurred in 2003. The preliminary feedback collected from the stakeholders in the region is discussed to understand the perspectives of stakeholders on the proposed prototype platform.
Resumo:
Control of brown spot of pear requires fungicide treatments of pear trees during the growing season. Scheduling fungicide sprays with the Brown spot of pear forecasting system (BSPcast) provides significantfungicide savings but does not increase the efficacy of disease control. Modifications in BSPcast wereintroduced in order to increase system performance. The changes consisted of: (1) the use of a daily infectionrisk (Rm≥0.2) instead of the 3-day cumulative risk (CR≥0.4) to guide the fungicide scheduling, and (2) theinclusion of the effect of relative humidity during interrupted wetness periods. Trials were performed during2 years in an experimental pear orchard in Spain. The modifications introduced did not result in increaseddisease control efficacy, compared with the original BSPcast system. In one year, no reduction in the numberof fungicide applications was obtained using the modified BSPcast system in comparison to the original system, but in the second year the number of treatments was reduced from 15 to 13. The original BSPcast model overestimated the daily infection risk in 6.5% of days with wetness periods with low relative humidity during the wetness interruption, and in these cases the modified version was more adequate
Resumo:
Real-time predictions are an indispensable requirement for traffic management in order to be able to evaluate the effects of different available strategies or policies. The combination of predicting the state of the network and the evaluation of different traffic management strategies in the short term future allows system managers to anticipate the effects of traffic control strategies ahead of time in order to mitigate the effect of congestion. This paper presents the current framework of decision support systems for traffic management based on short and medium-term predictions and includes some reflections on their likely evolution, based on current scientific research and the evolution of the availability of new types of data and their associated methodologies.
Resumo:
Many research works have being carried out on analyzing grain storage facility costs; however a few of them had taken into account the analysis of factors associated to all pre-processing and storage steps. The objective of this work was to develop a decision support system for determining the grain storage facility costs and utilization fees in grain storage facilities. The data of a CONAB storage facility located in Ponta Grossa - PR, Brazil, was used as input of the system developed to analyze its specific characteristics, such as amount of product received and stored throughout the year, hourly capacity of drying, cleaning, and receiving, and dispatch. By applying the decision support system, it was observed that the reception and expedition costs were exponentially reduced as the turnover rate of the storage increased. The cleaning and drying costs increased linearly with grain initial moisture. The storage cost increased exponentially as the occupancy rate of the storage facility decreased.
Resumo:
Transportation and warehousing are large and growing sectors in the society, and their efficiency is of high importance. Transportation also has a large share of global carbondioxide emissions, which are one the leading causes of anthropogenic climate warming. Various countries have agreed to decrease their carbon emissions according to the Kyoto protocol. Transportation is the only sector where emissions have steadily increased since the 1990s, which highlights the importance of transportation efficiency. The efficiency of transportation and warehousing can be improved with the help of simulations, but models alone are not sufficient. This research concentrates on the use of simulations in decision support systems. Three main simulation approaches are used in logistics: discrete-event simulation, systems dynamics, and agent-based modeling. However, individual simulation approaches have weaknesses of their own. Hybridization (combining two or more approaches) can improve the quality of the models, as it allows using a different method to overcome the weakness of one method. It is important to choose the correct approach (or a combination of approaches) when modeling transportation and warehousing issues. If an inappropriate method is chosen (this can occur if the modeler is proficient in only one approach or the model specification is not conducted thoroughly), the simulation model will have an inaccurate structure, which in turn will lead to misleading results. This issue can further escalate, as the decision-maker may assume that the presented simulation model gives the most useful results available, even though the whole model can be based on a poorly chosen structure. In this research it is argued that simulation- based decision support systems need to take various issues into account to make a functioning decision support system. The actual simulation model can be constructed using any (or multiple) approach, it can be combined with different optimization modules, and there needs to be a proper interface between the model and the user. These issues are presented in a framework, which simulation modelers can use when creating decision support systems. In order for decision-makers to fully benefit from the simulations, the user interface needs to clearly separate the model and the user, but at the same time, the user needs to be able to run the appropriate runs in order to analyze the problems correctly. This study recommends that simulation modelers should start to transfer their tacit knowledge to explicit knowledge. This would greatly benefit the whole simulation community and improve the quality of simulation-based decision support systems as well. More studies should also be conducted by using hybrid models and integrating simulations with Graphical Information Systems.
Resumo:
In the Innovation Union Scoreboard of 2011, Latvia ranked last amongst the EU countries in innovation performance. Even though there is sufficient scientific and technological basis, the results remain modest or low in most of the indicators concerning innovations. Several aspects influence the performance a national innovation system. In Latvia, the low effectiveness is often attributed to lack of financial support tools. As a comparison, Finland was chosen because of its well-established and documented innovation system. The aim of this study is to research the efficiency and effectiveness of the current financial innovation support tool system in Latvia from the point of view of an innovating company. It also attempts to analyze the support tool system of Latvia and compare to the relevant parts of the Finnish system. The study found that it is problematic for innovative companies in Latvia to receive the necessary funding especially for start-ups and SMEs due to the low number of grant programs, funds and lacking offer from banks, venture capital and business angels. To improve the situation, the Latvian government should restructure the funding mechanisms putting a bigger emphasis on innovative start-ups and SMEs. That would lay a foundation for future growth and boost research and scientific activities in Latvia.
Resumo:
Combating climate change is one of the key tasks of humanity in the 21st century. One of the leading causes is carbon dioxide emissions due to usage of fossil fuels. Renewable energy sources should be used instead of relying on oil, gas, and coal. In Finland a significant amount of energy is produced using wood. The usage of wood chips is expected to increase in the future significantly, over 60 %. The aim of this research is to improve understanding over the costs of wood chip supply chains. This is conducted by utilizing simulation as the main research method. The simulation model utilizes both agent-based modelling and discrete event simulation to imitate the wood chip supply chain. This thesis concentrates on the usage of simulation based decision support systems in strategic decision-making. The simulation model is part of a decision support system, which connects the simulation model to databases but also provides a graphical user interface for the decisionmaker. The main analysis conducted with the decision support system concentrates on comparing a traditional supply chain to a supply chain utilizing specialized containers. According to the analysis, the container supply chain is able to have smaller costs than the traditional supply chain. Also, a container supply chain can be more easily scaled up due to faster emptying operations. Initially the container operations would only supply part of the fuel needs of a power plant and it would complement the current supply chain. The model can be expanded to include intermodal supply chains as due to increased demand in the future there is not enough wood chips located close to current and future power plants.
Resumo:
Vaikka liiketoimintatiedon hallintaa sekä johdon päätöksentekoa on tutkittu laajasti, näiden kahden käsitteen yhteisvaikutuksesta on olemassa hyvin rajallinen määrä tutkimustietoa. Tulevaisuudessa aiheen tärkeys korostuu, sillä olemassa olevan datan määrä kasvaa jatkuvasti. Yritykset tarvitsevat jatkossa yhä enemmän kyvykkyyksiä sekä resursseja, jotta sekä strukturoitua että strukturoimatonta tietoa voidaan hyödyntää lähteestä riippumatta. Nykyiset Business Intelligence -ratkaisut mahdollistavat tehokkaan liiketoimintatiedon hallinnan osana johdon päätöksentekoa. Aiemman kirjallisuuden pohjalta, tutkimuksen empiirinen osuus tunnistaa liiketoimintatiedon hyödyntämiseen liittyviä tekijöitä, jotka joko tukevat tai rajoittavat johdon päätöksentekoprosessia. Tutkimuksen teoreettinen osuus johdattaa lukijan tutkimusaiheeseen kirjallisuuskatsauksen avulla. Keskeisimmät tutkimukseen liittyvät käsitteet, kuten Business Intelligence ja johdon päätöksenteko, esitetään relevantin kirjallisuuden avulla – tämän lisäksi myös dataan liittyvät käsitteet analysoidaan tarkasti. Tutkimuksen empiirinen osuus rakentuu tutkimusteorian pohjalta. Tutkimuksen empiirisessä osuudessa paneudutaan tutkimusteemoihin käytännön esimerkein: kolmen tapaustutkimuksen avulla tutkitaan sekä kuvataan toisistaan irrallisia tapauksia. Jokainen tapaus kuvataan sekä analysoidaan teoriaan perustuvien väitteiden avulla – nämä väitteet ovat perusedellytyksiä menestyksekkäälle liiketoimintatiedon hyödyntämiseen perustuvalle päätöksenteolle. Tapaustutkimusten avulla alkuperäistä tutkimusongelmaa voidaan analysoida tarkasti huomioiden jo olemassa oleva tutkimustieto. Analyysin tulosten avulla myös yksittäisiä rajoitteita sekä mahdollistavia tekijöitä voidaan analysoida. Tulokset osoittavat, että rajoitteilla on vahvasti negatiivinen vaikutus päätöksentekoprosessin onnistumiseen. Toisaalta yritysjohto on tietoinen liiketoimintatiedon hallintaan liittyvistä positiivisista seurauksista, vaikka kaikkia mahdollisuuksia ei olisikaan hyödynnetty. Tutkimuksen merkittävin tulos esittelee viitekehyksen, jonka puitteissa johdon päätöksentekoprosesseja voidaan arvioida sekä analysoida. Despite the fact that the literature on Business Intelligence and managerial decision-making is extensive, relatively little effort has been made to research the relationship between them. This particular field of study has become important since the amount of data in the world is growing every second. Companies require capabilities and resources in order to utilize structured data and unstructured data from internal and external data sources. However, the present Business Intelligence technologies enable managers to utilize data effectively in decision-making. Based on the prior literature, the empirical part of the thesis identifies the enablers and constraints in computer-aided managerial decision-making process. In this thesis, the theoretical part provides a preliminary understanding about the research area through a literature review. The key concepts such as Business Intelligence and managerial decision-making are explored by reviewing the relevant literature. Additionally, different data sources as well as data forms are analyzed in further detail. All key concepts are taken into account when the empirical part is carried out. The empirical part obtains an understanding of the real world situation when it comes to the themes that were covered in the theoretical part. Three selected case companies are analyzed through those statements, which are considered as critical prerequisites for successful computer-aided managerial decision-making. The case study analysis, which is a part of the empirical part, enables the researcher to examine the relationship between Business Intelligence and managerial decision-making. Based on the findings of the case study analysis, the researcher identifies the enablers and constraints through the case study interviews. The findings indicate that the constraints have a highly negative influence on the decision-making process. In addition, the managers are aware of the positive implications that Business Intelligence has for decision-making, but all possibilities are not yet utilized. As a main result of this study, a data-driven framework for managerial decision-making is introduced. This framework can be used when the managerial decision-making processes are evaluated and analyzed.
Resumo:
A growing concern for organisations is how they should deal with increasing amounts of collected data. With fierce competition and smaller margins, organisations that are able to fully realize the potential in the data they collect can gain an advantage over the competitors. It is almost impossible to avoid imprecision when processing large amounts of data. Still, many of the available information systems are not capable of handling imprecise data, even though it can offer various advantages. Expert knowledge stored as linguistic expressions is a good example of imprecise but valuable data, i.e. data that is hard to exactly pinpoint to a definitive value. There is an obvious concern among organisations on how this problem should be handled; finding new methods for processing and storing imprecise data are therefore a key issue. Additionally, it is equally important to show that tacit knowledge and imprecise data can be used with success, which encourages organisations to analyse their imprecise data. The objective of the research conducted was therefore to explore how fuzzy ontologies could facilitate the exploitation and mobilisation of tacit knowledge and imprecise data in organisational and operational decision making processes. The thesis introduces both practical and theoretical advances on how fuzzy logic, ontologies (fuzzy ontologies) and OWA operators can be utilized for different decision making problems. It is demonstrated how a fuzzy ontology can model tacit knowledge which was collected from wine connoisseurs. The approach can be generalised and applied also to other practically important problems, such as intrusion detection. Additionally, a fuzzy ontology is applied in a novel consensus model for group decision making. By combining the fuzzy ontology with Semantic Web affiliated techniques novel applications have been designed. These applications show how the mobilisation of knowledge can successfully utilize also imprecise data. An important part of decision making processes is undeniably aggregation, which in combination with a fuzzy ontology provides a promising basis for demonstrating the benefits that one can retrieve from handling imprecise data. The new aggregation operators defined in the thesis often provide new possibilities to handle imprecision and expert opinions. This is demonstrated through both theoretical examples and practical implementations. This thesis shows the benefits of utilizing all the available data one possess, including imprecise data. By combining the concept of fuzzy ontology with the Semantic Web movement, it aspires to show the corporate world and industry the benefits of embracing fuzzy ontologies and imprecision.
Resumo:
This thesis is a literature study that develops a conceptual model of decision making and decision support in service systems. The study is related to the Ä-Logi, Intelligent Service Logic for Welfare Sector Services research project, and the objective of the study is to develop the necessary theoretical framework to enable further research based on the research project results and material. The study first examines the concepts of service and service systems, focusing on understanding the characteristics of service systems and their implications for decision making and decision support to provide the basis for the development of the conceptual model. Based on the identified service system characteristics, an integrated model of service systems is proposed that views service systems through a number of interrelated perspectives that each offer different, but complementary, implications on the nature of decision making and the requirements for decision support in service systems. Based on the model, it is proposed that different types of decision making contexts can be identified in service systems that may be dominated by different types of decision making processes and where different types of decision support may be required, depending on the characteristics of the decision making context and its decision making processes. The proposed conceptual model of decision making and decision support in service systems examines the characteristics of decision making contexts and processes in service systems, and their typical requirements for decision support. First, a characterization of different types of decision making contexts in service systems is proposed based on the Cynefin framework and the identified service system characteristics. Second, the nature of decision making processes in service systems is proposed to be dual, with both rational and naturalistic decision making processes existing in service systems, and having an important and complementary role in decision making in service systems. Finally, a characterization of typical requirements for decision support in service systems is proposed that examines the decision support requirements associated with different types of decision making processes in characteristically different types of decision making contexts. It is proposed that decision support for the decision making processes that are based on rational decision making can be based on organizational decision support models, while decision support for the decision making processes that are based on naturalistic decision making should be based on supporting the decision makers’ situation awareness and facilitating the development of their tacit knowledge of the system and its tasks. Based on the proposed conceptual model a further research process is proposed. The study additionally provides a number of new perspectives on the characteristics of service systems, and the nature of decision making and requirements for decision support in service systems that can potentially provide a basis for further discussion and research, and support the practice alike.