892 resultados para Database, Image Retrieval, Browsing, Semantic Concept
Resumo:
Depuis quelques années, Internet est devenu un média incontournable pour la diffusion de ressources multilingues. Cependant, les différences linguistiques constituent souvent un obstacle majeur aux échanges de documents scientifiques, culturels, pédagogiques et commerciaux. En plus de cette diversité linguistique, on constate le développement croissant de bases de données et de collections composées de différents types de documents textuels ou multimédias, ce qui complexifie également le processus de repérage documentaire. En général, on considère l’image comme « libre » au point de vue linguistique. Toutefois, l’indexation en vocabulaire contrôlé ou libre (non contrôlé) confère à l’image un statut linguistique au même titre que tout document textuel, ce qui peut avoir une incidence sur le repérage. Le but de notre recherche est de vérifier l’existence de différences entre les caractéristiques de deux approches d’indexation pour les images ordinaires représentant des objets de la vie quotidienne, en vocabulaire contrôlé et en vocabulaire libre, et entre les résultats obtenus au moment de leur repérage. Cette étude suppose que les deux approches d’indexation présentent des caractéristiques communes, mais également des différences pouvant influencer le repérage de l’image. Cette recherche permet de vérifier si l’une ou l’autre de ces approches d’indexation surclasse l’autre, en termes d’efficacité, d’efficience et de satisfaction du chercheur d’images, en contexte de repérage multilingue. Afin d’atteindre le but fixé par cette recherche, deux objectifs spécifiques sont définis : identifier les caractéristiques de chacune des deux approches d’indexation de l’image ordinaire représentant des objets de la vie quotidienne pouvant influencer le repérage, en contexte multilingue et exposer les différences sur le plan de l’efficacité, de l’efficience et de la satisfaction du chercheur d’images à repérer des images ordinaires représentant des objets de la vie quotidienne indexées à l’aide d’approches offrant des caractéristiques variées, en contexte multilingue. Trois modes de collecte des données sont employés : l’analyse des termes utilisés pour l’indexation des images, la simulation du repérage d’un ensemble d’images indexées selon chacune des formes d’indexation à l’étude réalisée auprès de soixante répondants, et le questionnaire administré aux participants pendant et après la simulation du repérage. Quatre mesures sont définies pour cette recherche : l’efficacité du repérage d’images, mesurée par le taux de succès du repérage calculé à l’aide du nombre d’images repérées; l’efficience temporelle, mesurée par le temps, en secondes, utilisé par image repérée; l’efficience humaine, mesurée par l’effort humain, en nombre de requêtes formulées par image repérée et la satisfaction du chercheur d’images, mesurée par son autoévaluation suite à chaque tâche de repérage effectuée. Cette recherche montre que sur le plan de l’indexation de l’image ordinaire représentant des objets de la vie quotidienne, les approches d’indexation étudiées diffèrent fondamentalement l’une de l’autre, sur le plan terminologique, perceptuel et structurel. En outre, l’analyse des caractéristiques des deux approches d’indexation révèle que si la langue d’indexation est modifiée, les caractéristiques varient peu au sein d’une même approche d’indexation. Finalement, cette recherche souligne que les deux approches d’indexation à l’étude offrent une performance de repérage des images ordinaires représentant des objets de la vie quotidienne différente sur le plan de l’efficacité, de l’efficience et de la satisfaction du chercheur d’images, selon l’approche et la langue utilisées pour l’indexation.
Resumo:
Grey Level Co-occurrence Matrices (GLCM) are one of the earliest techniques used for image texture analysis. In this paper we defined a new feature called trace extracted from the GLCM and its implications in texture analysis are discussed in the context of Content Based Image Retrieval (CBIR). The theoretical extension of GLCM to n-dimensional gray scale images are also discussed. The results indicate that trace features outperform Haralick features when applied to CBIR.
Resumo:
Axial brain slices containing similar anatomical structures are retrieved using features derived from the histogram of Local binary pattern (LBP). A rotation invariant description of texture in terms of texture patterns and their strength is obtained with the incorporation of local variance to the LBP, called Modified LBP (MOD-LBP). In this paper, we compare Histogram based Features of LBP (HF/LBP), against Histogram based Features of MOD-LBP (HF/MOD-LBP) in retrieving similar axial brain images. We show that replacing local histogram with a local distance transform based similarity metric further improves the performance of MOD-LBP based image retrieval
Resumo:
Shape complexity has recently received attention from different fields, such as computer vision and psychology. In this paper, integral geometry and information theory tools are applied to quantify the shape complexity from two different perspectives: from the inside of the object, we evaluate its degree of structure or correlation between its surfaces (inner complexity), and from the outside, we compute its degree of interaction with the circumscribing sphere (outer complexity). Our shape complexity measures are based on the following two facts: uniformly distributed global lines crossing an object define a continuous information channel and the continuous mutual information of this channel is independent of the object discretisation and invariant to translations, rotations, and changes of scale. The measures introduced in this paper can be potentially used as shape descriptors for object recognition, image retrieval, object localisation, tumour analysis, and protein docking, among others
Resumo:
In this paper, we propose a content selection framework that improves the users` experience when they are enriching or authoring pieces of news. This framework combines a variety of techniques to retrieve semantically related videos, based on a set of criteria which are specified automatically depending on the media`s constraints. The combination of different content selection mechanisms can improve the quality of the retrieved scenes, because each technique`s limitations are minimized by other techniques` strengths. We present an evaluation based on a number of experiments, which show that the retrieved results are better when all criteria are used at time.
Resumo:
Texture is an important visual attribute used to describe the pixel organization in an image. As well as it being easily identified by humans, its analysis process demands a high level of sophistication and computer complexity. This paper presents a novel approach for texture analysis, based on analyzing the complexity of the surface generated from a texture, in order to describe and characterize it. The proposed method produces a texture signature which is able to efficiently characterize different texture classes. The paper also illustrates a novel method performance on an experiment using texture images of leaves. Leaf identification is a difficult and complex task due to the nature of plants, which presents a huge pattern variation. The high classification rate yielded shows the potential of the method, improving on traditional texture techniques, such as Gabor filters and Fourier analysis.
Resumo:
This paper introduces a novel methodology to shape boundary characterization, where a shape is modeled into a small-world complex network. It uses degree and joint degree measurements in a dynamic evolution network to compose a set of shape descriptors. The proposed shape characterization method has all efficient power of shape characterization, it is robust, noise tolerant, scale invariant and rotation invariant. A leaf plant classification experiment is presented on three image databases in order to evaluate the method and compare it with other descriptors in the literature (Fourier descriptors, Curvature, Zernike moments and multiscale fractal dimension). (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Esta é uma pesquisa de caráter exploratório, cujo objetivo foi investigar os elementos que compõem a imagem conceitual de estudantes universitários sobre o conceito de limite de uma função de uma variável real. O estudo envolveu 25 estudantes do curso de licenciatura em matemática de duas universidades públicas no estado do Pará (Brasil) e constituiu-se de duas etapas. Primeiramente, aplicamos um questionário que continha tarefas relacionadas aos aspectos conceituais de limite de uma função de uma variável. A segunda etapa consistiu na realização de entrevistas com seis sujeitos que foram selecionados devido às imagens conceituais evocadas por eles na etapa anterior, e que por sua vez, encontravam-se em conformidade com os quatro Temas de Discussão (TD) que nortearam essas entrevistas. A análise dos resultados baseou-se, sobretudo, na teoria de Tall e Vinner (1981) e Vinner (1991), bem como nos estudos realizados por Cottril et al (1996), Jordaan (2005), Juter (2006), Nair (2009), dentre outros, que compuseram a fundamentação teórica do presente estudo. Dentre os resultados obtidos, ressaltamos que os estudantes relacionam o conceito de limite de uma função de uma variável real com interpretações estáticas e/ou dinâmicas que, em alguns momentos, constituíram-se como fatores de conflito potencial, conforme destacado por Vinner (1991). Além disso, evidenciamos que algumas das imagens conceituais evocadas pelos sujeitos investigados não se fizeram coerentes, fato que os influenciou a construir uma definição conceitual pessoal diferente da definição conceitual formal de limite de uma função de uma variável real.
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
Pós-graduação em Estudos Linguísticos - IBILCE
Resumo:
With the widespread proliferation of computers, many human activities entail the use of automatic image analysis. The basic features used for image analysis include color, texture, and shape. In this paper, we propose a new shape description method, called Hough Transform Statistics (HTS), which uses statistics from the Hough space to characterize the shape of objects or regions in digital images. A modified version of this method, called Hough Transform Statistics neighborhood (HTSn), is also presented. Experiments carried out on three popular public image databases showed that the HTS and HTSn descriptors are robust, since they presented precision-recall results much better than several other well-known shape description methods. When compared to Beam Angle Statistics (BAS) method, a shape description method that inspired their development, both the HTS and the HTSn methods presented inferior results regarding the precision-recall criterion, but superior results in the processing time and multiscale separability criteria. The linear complexity of the HTS and the HTSn algorithms, in contrast to BAS, make them more appropriate for shape analysis in high-resolution image retrieval tasks when very large databases are used, which are very common nowadays. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
The multiple-instance learning (MIL) model has been successful in areas such as drug discovery and content-based image-retrieval. Recently, this model was generalized and a corresponding kernel was introduced to learn generalized MIL concepts with a support vector machine. While this kernel enjoyed empirical success, it has limitations in its representation. We extend this kernel by enriching its representation and empirically evaluate our new kernel on data from content-based image retrieval, biological sequence analysis, and drug discovery. We found that our new kernel generalized noticeably better than the old one in content-based image retrieval and biological sequence analysis and was slightly better or even with the old kernel in the other applications, showing that an SVM using this kernel does not overfit despite its richer representation.