996 resultados para Data Warehousing, OLAP
Resumo:
Today, databases have become an integral part of information systems. In the past two decades, we have seen different database systems being developed independently and used in different applications domains. Today's interconnected networks and advanced applications, such as data warehousing, data mining & knowledge discovery and intelligent data access to information on the Web, have created a need for integrated access to such heterogeneous, autonomous, distributed database systems. Heterogeneous/multidatabase research has focused on this issue resulting in many different approaches. However, a single, generally accepted methodology in academia or industry has not emerged providing ubiquitous intelligent data access from heterogeneous, autonomous, distributed information sources. This thesis describes a heterogeneous database system being developed at Highperformance Database Research Center (HPDRC). A major impediment to ubiquitous deployment of multidatabase technology is the difficulty in resolving semantic heterogeneity. That is, identifying related information sources for integration and querying purposes. Our approach considers the semantics of the meta-data constructs in resolving this issue. The major contributions of the thesis work include: (i.) providing a scalable, easy-to-implement architecture for developing a heterogeneous multidatabase system, utilizing Semantic Binary Object-oriented Data Model (Sem-ODM) and Semantic SQL query language to capture the semantics of the data sources being integrated and to provide an easy-to-use query facility; (ii.) a methodology for semantic heterogeneity resolution by investigating into the extents of the meta-data constructs of component schemas. This methodology is shown to be correct, complete and unambiguous; (iii.) a semi-automated technique for identifying semantic relations, which is the basis of semantic knowledge for integration and querying, using shared ontologies for context-mediation; (iv.) resolutions for schematic conflicts and a language for defining global views from a set of component Sem-ODM schemas; (v.) design of a knowledge base for storing and manipulating meta-data and knowledge acquired during the integration process. This knowledge base acts as the interface between integration and query processing modules; (vi.) techniques for Semantic SQL query processing and optimization based on semantic knowledge in a heterogeneous database environment; and (vii.) a framework for intelligent computing and communication on the Internet applying the concepts of our work.
Resumo:
Libraries since their inception 4000 years ago have been in a process of constant change. Although, changes were in slow motion for centuries, in the last decades, academic libraries have been continuously striving to adapt their services to the ever-changing user needs of students and academic staff. In addition, e-content revolution, technological advances, and ever-shrinking budgets have obliged libraries to efficiently allocate their limited resources among collection and services. Unfortunately, this resource allocation is a complex process due to the diversity of data sources and formats required to be analyzed prior to decision-making, as well as the lack of efficient integration methods. The main purpose of this study is to develop an integrated model that supports libraries in making optimal budgeting and resource allocation decisions among their services and collection by means of a holistic analysis. To this end, a combination of several methodologies and structured approaches is conducted. Firstly, a holistic structure and the required toolset to holistically assess academic libraries are proposed to collect and organize the data from an economic point of view. A four-pronged theoretical framework is used in which the library system and collection are analyzed from the perspective of users and internal stakeholders. The first quadrant corresponds to the internal perspective of the library system that is to analyze the library performance, and costs incurred and resources consumed by library services. The second quadrant evaluates the external perspective of the library system; user’s perception about services quality is judged in this quadrant. The third quadrant analyses the external perspective of the library collection that is to evaluate the impact of the current library collection on its users. Eventually, the fourth quadrant evaluates the internal perspective of the library collection; the usage patterns followed to manipulate the library collection are analyzed. With a complete framework for data collection, these data coming from multiple sources and therefore with different formats, need to be integrated and stored in an adequate scheme for decision support. A data warehousing approach is secondly designed and implemented to integrate, process, and store the holistic-based collected data. Ultimately, strategic data stored in the data warehouse are analyzed and implemented for different purposes including the following: 1) Data visualization and reporting is proposed to allow library managers to publish library indicators in a simple and quick manner by using online reporting tools. 2) Sophisticated data analysis is recommended through the use of data mining tools; three data mining techniques are examined in this research study: regression, clustering and classification. These data mining techniques have been applied to the case study in the following manner: predicting the future investment in library development; finding clusters of users that share common interests and similar profiles, but belong to different faculties; and predicting library factors that affect student academic performance by analyzing possible correlations of library usage and academic performance. 3) Input for optimization models, early experiences of developing an optimal resource allocation model to distribute resources among the different processes of a library system are documented in this study. Specifically, the problem of allocating funds for digital collection among divisions of an academic library is addressed. An optimization model for the problem is defined with the objective of maximizing the usage of the digital collection over-all library divisions subject to a single collection budget. By proposing this holistic approach, the research study contributes to knowledge by providing an integrated solution to assist library managers to make economic decisions based on an “as realistic as possible” perspective of the library situation.
Resumo:
With the increasing awareness of protein folding disorders, the explosion of genomic information, and the need for efficient ways to predict protein structure, protein folding and unfolding has become a central issue in molecular sciences research. Molecular dynamics computer simulations are increasingly employed to understand the folding and unfolding of proteins. Running protein unfolding simulations is computationally expensive and finding ways to enhance performance is a grid issue on its own. However, more and more groups run such simulations and generate a myriad of data, which raises new challenges in managing and analyzing these data. Because the vast range of proteins researchers want to study and simulate, the computational effort needed to generate data, the large data volumes involved, and the different types of analyses scientists need to perform, it is desirable to provide a public repository allowing researchers to pool and share protein unfolding data. This paper describes efforts to provide a grid-enabled data warehouse for protein unfolding data. We outline the challenge and present first results in the design and implementation of the data warehouse.
Resumo:
This paper reviews the literature concerning the practice of using Online Analytical Processing (OLAP) systems to recall information stored by Online Transactional Processing (OLTP) systems. Such a review provides a basis for discussion on the need for the information that are recalled through OLAP systems to maintain the contexts of transactions with the data captured by the respective OLTP system. The paper observes an industry trend involving the use of OLTP systems to process information into data, which are then stored in databases without the business rules that were used to process information and data stored in OLTP databases without associated business rules. This includes the necessitation of a practice, whereby, sets of business rules are used to extract, cleanse, transform and load data from disparate OLTP systems into OLAP databases to support the requirements for complex reporting and analytics. These sets of business rules are usually not the same as business rules used to capture data in particular OLTP systems. The paper argues that, differences between the business rules used to interpret these same data sets, risk gaps in semantics between information captured by OLTP systems and information recalled through OLAP systems. Literature concerning the modeling of business transaction information as facts with context as part of the modelling of information systems were reviewed to identify design trends that are contributing to the design quality of OLTP and OLAP systems. The paper then argues that; the quality of OLTP and OLAP systems design has a critical dependency on the capture of facts with associated context, encoding facts with contexts into data with business rules, storage and sourcing of data with business rules, decoding data with business rules into the facts with the context and recall of facts with associated contexts. The paper proposes UBIRQ, a design model to aid the co-design of data with business rules storage for OLTP and OLAP purposes. The proposed design model provides the opportunity for the implementation and use of multi-purpose databases, and business rules stores for OLTP and OLAP systems. Such implementations would enable the use of OLTP systems to record and store data with executions of business rules, which will allow for the use of OLTP and OLAP systems to query data with business rules used to capture the data. Thereby ensuring information recalled via OLAP systems preserves the contexts of transactions as per the data captured by the respective OLTP system.
Resumo:
Em muitos casos o desenvolvimento de soluções recorrendo a data warehouses é pensado para funcionar de forma autónoma e não numa perspectiva cooperativa. Este facto leva a que existam alguns problemas quando é necessário integrar diferentes data marts de forma a construir uma solução integrada que possa facilitar o acesso á informação. A solução proposta passa pelo desenvolvimento de um servidor de baixo acoplamento que permite integrar diferentes datas marts heterogéneos, utilizando o protocolo padrão XMLA. O mesmo não possui qualquer informação presente nos múltiplos data marts a integrar. Este servidor apenas possui meta-informação que permite saber quais são as dimensões concordantes entre os diferentes data marts, possibilitando assim a realização de operações de drill-across entre as diversas fontes de dados. Com esta solução é possível a existência um elevado grau de descomprometimento entre o servidor de integração e os repositórios de informação, sendo apenas necessário que o servidor saiba de que forma os dados estão relacionados. Este servidor é constituído por diferentes módulos. De entre eles realça-se o módulo que permite gerar múltiplas interrogações, para cada um dos data marts, a partir de uma única interrogação. O mesmo módulo permite posteriormente juntar o resultado das interrogações a todos os data marts numa única resposta. Para realizar a prova da viabilidade da solução, foram desenvolvidos dois data marts que possuem dimensões concordantes. Cada um deles foi colocado em servidores de diferentes fornecedores. Ao ser colocado cada um dos data marts em dois servidores de fornecedores diferentes, é possível demonstrar também que a solução funciona com diferentes servidores. Para tornar possível a interrogação do servidor de integração, foi desenvolvida uma aplicação cliente que permite que o utilizador possa, ao ir adicionando e removendo dimensões, saber quais os dados que são ou não compatíveis.
Resumo:
This paper discusses the results of applied research on the eco-driving domain based on a huge data set produced from a fleet of Lisbon's public transportation buses for a three-year period. This data set is based on events automatically extracted from the control area network bus and enriched with GPS coordinates, weather conditions, and road information. We apply online analytical processing (OLAP) and knowledge discovery (KD) techniques to deal with the high volume of this data set and to determine the major factors that influence the average fuel consumption, and then classify the drivers involved according to their driving efficiency. Consequently, we identify the most appropriate driving practices and styles. Our findings show that introducing simple practices, such as optimal clutch, engine rotation, and engine running in idle, can reduce fuel consumption on average from 3 to 5l/100 km, meaning a saving of 30 l per bus on one day. These findings have been strongly considered in the drivers' training sessions.
Resumo:
Inspired by the relational algebra of data processing, this paper addresses the foundations of data analytical processing from a linear algebra perspective. The paper investigates, in particular, how aggregation operations such as cross tabulations and data cubes essential to quantitative analysis of data can be expressed solely in terms of matrix multiplication, transposition and the Khatri–Rao variant of the Kronecker product. The approach offers a basis for deriving an algebraic theory of data consolidation, handling the quantitative as well as qualitative sides of data science in a natural, elegant and typed way. It also shows potential for parallel analytical processing, as the parallelization theory of such matrix operations is well acknowledged.
Resumo:
Because of the increased availability of different kind of business intelligence technologies and tools it can be easy to fall in illusion that new technologies will automatically solve the problems of data management and reporting of the company. The management is not only about management of technology but also the management of processes and people. This thesis is focusing more into traditional data management and performance management of production processes which both can be seen as a requirement for long lasting development. Also some of the operative BI solutions are considered in the ideal state of reporting system. The objectives of this study are to examine what requirements effective performance management of production processes have for data management and reporting of the company and to see how they are effecting on the efficiency of it. The research is executed as a theoretical literary research about the subjects and as a qualitative case study about reporting development project of Finnsugar Ltd. The case study is examined through theoretical frameworks and by the active participant observation. To get a better picture about the ideal state of reporting system simple investment calculations are performed. According to the results of the research, requirements for effective performance management of production processes are automation in the collection of data, integration of operative databases, usage of efficient data management technologies like ETL (Extract, Transform, Load) processes, data warehouse (DW) and Online Analytical Processing (OLAP) and efficient management of processes, data and roles.
Resumo:
The concepts of on-line transactional processing (OLTP) and on-line analytical processing (OLAP) are often confused with the technologies or models that are used to design transactional and analytics based information systems. This in some way has contributed to existence of gaps between the semantics in information captured during transactional processing and information stored for analytical use. In this paper, we propose the use of a unified semantics design model, as a solution to help bridge the semantic gaps between data captured by OLTP systems and the information provided by OLAP systems. The central focus of this design approach is on enabling business intelligence using not just data, but data with context.
Resumo:
Sistemas de tomada de decisão baseados em Data Warehouse (DW) estão sendo cada dia mais utilizados por grandes empresas e organizações. O modelo multidimensional de organização dos dados utilizado por estes sistemas, juntamente com as técnicas de processamento analítico on-line (OLAP), permitem análises complexas sobre o histórico dos negócios através de uma simples e intuitiva interface de consulta. Apesar dos DWs armazenarem dados históricos por natureza, as estruturas de organização e classificação destes dados, chamadas de dimensões, não possuem a rigor uma representação temporal, refletindo somente a estrutura corrente. Para um sistema destinado à análise de dados, a falta do histórico das dimensões impossibilita consultas sobre o ambiente real de contextualização dos dados passados. Além disso, as alterações dos esquemas multidimensionais precisam ser assistidas e gerenciadas por um modelo de evolução, de forma a garantir a consistência e integridade do modelo multidimensional sem a perda de informações relevantes. Neste trabalho são apresentadas dezessete operações de alteração de esquema e sete operações de alteração de instâncias para modelos multidimensionais de DW. Um modelo de versões, baseado na associação de intervalos de validade aos esquemas e instâncias, é proposto para o gerenciamento dessas operações. Todo o histórico de definições e de dados do DW é mantido por esse modelo, permitindo análises completas dos dados passados e da evolução do DW. Além de suportar consultas históricas sobre as definições e as instâncias do DW, o modelo também permite a manutenção de mais de um esquema ativo simultaneamente. Isto é, dois ou mais esquemas podem continuar a ter seus dados atualizados periodicamente, permitindo assim que as aplicações possam consultar dados recentes utilizando diferentes versões de esquema.
Resumo:
En esta tesis doctoral se estudian las variaciones de radón en el interior de dos viviendas similares de construcción nueva en Madrid, una de ellas ocupada y la otra no, que forman parte del mismo edificio residencial. La concentración de radón y los parámetros ambientales (presión, temperatura y humedad) se midieron durante ocho meses. La monitorización del gas radón se realizó mediante detectores de estado sólido. Simultáneamente, se adquirieron algunas variables atmosféricas de un modelo atmosférico. En el análisis de los datos, se utilizó principalmente el método de la Transformada Wavelet. Los resultados muestran que el nivel de radón es ligeramente más alto en la vivienda ocupada que en la otra. A partir del análisis desarrollado en este estudio, se encontró que había un patrón específico estacional en la concentración de radón interior. Además, se analizó también la influencia antropogénica. Se pudieron observar patrones periódicos muy similares en intervalos concretos sin importar si la vivienda está ocupada o no. Por otra parte, los datos se almacenaron en cubos OLAP. El análisis se realizó usando unos algoritmos de agrupamiento (clustering) y de asociación. El objetivo es descubrir las relaciones entre el radón y las condiciones externas como la presión, estabilidad, etc. Además, la metodología aplicada puede ser útil para estudios ambientales en donde se mida radón en espacios interiores. ABSTRACT The present thesis studies the indoor radon variations in two similar new dwellings, one of them occupied and the other unoccupied, from the same residential building in Madrid. Radon concentration and ambient parameters were measured during eight months. Solid state detectors were used for the radon monitoring. Simultaneously, several atmospheric variables were acquired from an atmospheric model. In the data analysis, the Wavelet Transform Method was mainly used. The results show that radon level is slightly higher in the unoccupied dwelling than in the other one. From the analysis developed in this study, it is found that a specific seasonal pattern exists in the indoor radon concentration. Besides, the anthropogenic influence is also analysed. Nearly periodical patterns could be observed in specific periods whether dwelling is occupied or not. Otherwise, data were stored in cubes OLAP. Analysis was carried out using clustering and association algorithms. The aim is to find out the relationships among radon and external conditions like pressure, stability, etc. Besides, the methodology could be useful to assess environmental studies, where indoor radon is measured.
Open business intelligence: on the importance of data quality awareness in user-friendly data mining
Resumo:
Citizens demand more and more data for making decisions in their daily life. Therefore, mechanisms that allow citizens to understand and analyze linked open data (LOD) in a user-friendly manner are highly required. To this aim, the concept of Open Business Intelligence (OpenBI) is introduced in this position paper. OpenBI facilitates non-expert users to (i) analyze and visualize LOD, thus generating actionable information by means of reporting, OLAP analysis, dashboards or data mining; and to (ii) share the new acquired information as LOD to be reused by anyone. One of the most challenging issues of OpenBI is related to data mining, since non-experts (as citizens) need guidance during preprocessing and application of mining algorithms due to the complexity of the mining process and the low quality of the data sources. This is even worst when dealing with LOD, not only because of the different kind of links among data, but also because of its high dimensionality. As a consequence, in this position paper we advocate that data mining for OpenBI requires data quality-aware mechanisms for guiding non-expert users in obtaining and sharing the most reliable knowledge from the available LOD.
Resumo:
Purpose: This paper extends the use of Radio Frequency Identification (RFID) data for accounting of warehouse costs and services. Time Driven Activity Based Costing (TDABC) methodology is enhanced with the real-time collected RFID data about duration of warehouse activities. This allows warehouse managers to have accurate and instant calculations of costs. The RFID enhanced TDABC (RFID-TDABC) is proposed as a novel application of the RFID technology. Research Approach: Application of RFID-TDABC in a warehouse is implemented on warehouse processes of a case study company. Implementation covers receiving, put-away, order picking, and despatching. Findings and Originality: RFID technology is commonly used for the identification and tracking items. The use of the RFID generated information with the TDABC can be successfully extended to the area of costing. This RFID-TDABC costing model will benefit warehouse managers with accurate and instant calculations of costs. Research Impact: There are still unexplored benefits to RFID technology in its applications in warehousing and the wider supply chain. A multi-disciplinary research approach led to combining RFID technology and TDABC accounting method in order to propose RFID-TDABC. Combining methods and theories from different fields with RFID, may lead researchers to develop new techniques such as RFID-TDABC presented in this paper. Practical Impact: RFID-TDABC concept will be of value to practitioners by showing how warehouse costs can be accurately measured by using this approach. Providing better understanding of incurred costs may result in a further optimisation of warehousing operations, lowering costs of activities, and thus provide competitive pricing to customers. RFID-TDABC can be applied in a wider supply chain.
Resumo:
Discovery Driven Analysis (DDA) is a common feature of OLAP technology to analyze structured data. In essence, DDA helps analysts to discover anomalous data by highlighting 'unexpected' values in the OLAP cube. By giving indications to the analyst on what dimensions to explore, DDA speeds up the process of discovering anomalies and their causes. However, Discovery Driven Analysis (and OLAP in general) is only applicable on structured data, such as records in databases. We propose a system to extend DDA technology to semi-structured text documents, that is, text documents with a few structured data. Our system pipeline consists of two stages: first, the text part of each document is structured around user specified dimensions, using semi-PLSA algorithm; then, we adapt DDA to these fully structured documents, thus enabling DDA on text documents. We present some applications of this system in OLAP analysis and show how scalability issues are solved. Results show that our system can handle reasonable datasets of documents, in real time, without any need for pre-computation.