909 resultados para Cyclic softening
Resumo:
Conformational analysis of cyclic pentapeptides having two intra-ring 3 leads to 1 hydrogen bonds has been carried out. It is found that the structure can easily be formed with trans planar peptide units without causing significant angular strain at the alpha-carbon atoms. Four different types of conformations designated Types I--IV are possible for the backbone structure. Details of these four types of conformations and also the accommodating possibility of these types for allglycyl and all-alanyl residues are presented. Three of the four types have relatively low energies for glycyl residues whereas the other one has a slightly higher energy. When alanyl residues are introduced at the five alpha-carbon atoms, the types that are energetically favourable depend upon the sequence of isomers. Energy calculations have also been carried out for the combinations of glycyl, L- and D-alanyl residues. The theoretical results are compared with available experimental observations both from solution and solid state studies.
Resumo:
One of the major tasks in swarm intelligence is to design decentralized but homogenoeus strategies to enable controlling the behaviour of swarms of agents. It has been shown in the literature that the point of convergence and motion of a swarm of autonomous mobile agents can be controlled by using cyclic pursuit laws. In cyclic pursuit, there exists a predefined cyclic connection between agents and each agent pursues the next agent in the cycle. In this paper we generalize this idea to a case where an agent pursues a point which is the weighted average of the positions of the remaining agents. This point correspond to a particular pursuit sequence. Using this concept of centroidal cyclic pursuit, the behavior of the agents is analyzed such that, by suitably selecting the agents' gain, the rendezvous point of the agents can be controlled, directed linear motion of the agents can be achieved, and the trajectories of the agents can be changed by switching between the pursuit sequences keeping some of the behaviors of the agents invariant. Simulation experiments are given to support the analytical proofs.
Resumo:
Fracture behaviour of notched and un-notched plain concrete slender beams subjected to three-point or four-point bending is analyzed through a one-dimensional model, also called Softening Beam Model. Fundamental equations of equilibrium are used to develop the model. The influence of structural size in altering the fracture mode from brittle fracture to plastic collapse is explained through the stress distribution across the uncracked ligament obtained by varying the strain softening modulus. It is found that at the onset of fracture instability, stress at the crack tip is equal to zero. The maximum load and fracture load are found to be different and a unique value for the fracture load is obtained. It is shown that the length of the fracture process zone depends on the value of the strain softening modulus. Theoretical limits for fracture process zone length are also calculated. Several nonlinear fracture parameters, such as, crack tip opening displacement, crack mouth opening displacement and fracture energy are computed for a wide variety of beam specimens reported in the literature and are found to compare very well with experimental and theoretical results. It is demonstrated that by following a simple procedure, both pre-peak and post-peak portions of load versus crack mouth opening displacement curve can be obtained quite accurately. Further, a simple procedure to calculate the maximum load is also developed. The predicted values of maximum load are found to agree well with the experimental values. The Softening Beam Model (SBM), proposed in this investigation is very simple and is based on rational considerations. It can completely describe the fracture process from the beginning of formation of the fracture process zone till the onset of fracture instability.A l'aide d'un modèle unidimensionnel dit ldquoSoftening Beam Modelrdquo (SBM), on analyse le comportement à rupture de poutres élancées pleines entaillées ou non, soumises en flexion en trois ou quatre points. Des équations fondamentales d'équilibre sont utilisées pour développer le modèle. On explique l'influence de la taille du composant sur l'altération du mode de rupture en rupture fragile et en effondrement plastique par la distribution par la distribution des contraintes sur le ligament non fissuré lorsque varie le module d'adoucissement. On trouve que la contrainte à l'extrémité de la fissure est nulle est nulle au début de l'instabilité de la rupture. La charge maximum et la charge à la rupture sont trouvées différentes, et on obtient une valeur unique de la charge à la rupture. On montre que la longueur de la zone concernée par le processus de rupture d'pend de la valeur du module d'adoucissement. On calcule également les limites théoriques de longueur de cette zone. Divers paramètres de rupture non linéaire sont calculés pour une large gamme d'éprouvettes en poutres reprises dans la littérature; on trouve qu'il existe une bonne concordance avec les résultats expérimentaux et théoriques. On démontre qu'en suivant une procédure simple on peut obtenir avec une bonne précision la courbe reliant les portions avant et après le pic de sollicitation en fonction du COD de la fissure. En outre, on développe une procédure simple pour calculer la charge maximum. Les valeurs prédites sont en bon accord avec les valeurs expérimentales. Le modèle SBM proposé est très simple et est basé sur des considérations rationnelles. Il est susceptible de décrire complètement le processus de rupture depuis le début de la formation de la zone intéressée jusqu'à l'amorçage de la rupture instable.
Resumo:
Low-cycle fatigue (LCF) responses of NIMONIC PE-16 for various prior microstructures and strain amplitudes have been evaluated and the fatigue behavior has been explained in terms of the operative deformation mechanisms. Total strain-controlled LCF tests were performed at 923 K on samples possessing three different prior microstructures: alloy A in solution-annealed condition (free of γ′ and carbides), alloy B with double aging treatment (spherical γ′ of 18-nm diameter and M23C6), and alloy C with another double aging treatment (γ′ of size 35 nm, MC and M23C6). All three microstructures exhibited an intial cyclic hardening followed by a period of gradual softening at 923 K. Coffin-Manson plots describing the plastic strain amplitudevs number of reversals to failure showed that alloy A had maximum fatigue life while C showed the least. Alloy B exhibited a two-slope behavior in the Coffin-Manson plot over the strain amplitudes investigated. This has been ascribed to the change in the degree of homogeneity of deformation at high and low strain amplitudes. Transmission electron microscopic studies were carried out to characterize the various deformation mechanisms and precipitation reactions occurring during fatigue testign. Fresh precipitation of fine γ′ was confirmed by the development of “mottled contrast” in alloy C. Evidence for the shearing of the ordered γ′ precipitates was revealed by the presence of superdislocations in alloy C. Repeated shearing during cyclic loading led to the reduction in the size of the γ′ and consequent softening. Coarser γ′ precipitates were associated with Orowan loops. The observed fatigue behavior has been rationalized based on the micromechanisms stated above and on the degree of homogenization of slip assessed by slipband spacing measurements on tested samples.
Resumo:
The activity of many proteins orchestrating different biological processes is regulated by allostery, where ligand binding at one site alters the function of another site. Allosteric changes can be brought about by either a change in the dynamics of a protein, or alteration in its mean structure. We have investigated the mechanisms of allostery induced by chemically distinct ligands in the cGMP-binding, cGMP-specific phosphodiesterase, PDE5. PDE5 is the target for catalytic site inhibitors, such as sildenafil, that are used for the treatment of erectile dysfunction and pulmonary hypertension. PDE5 is a multidomain protein and contains two N-terminal cGMP-specific phosphodiesterase, bacterial adenylyl cyclase, FhLA transcriptional regulator (GAF) domains, and a C-terminal catalytic domain. Cyclic GMP binding to the GAFa domain and sildenafil binding to the catalytic domain result in conformational changes, which to date have been studied either with individual domains or with purified enzyme. Employing intramolecular bioluminescence resonance energy transfer, which can monitor conformational changes both in vitro and in intact cells, we show that binding of cGMP and sildenafil to PDE5 results in distinct conformations of the protein. Metal ions bound to the catalytic site also allosterically modulated cGMP- and sildenafil-induced conformational changes. The sildenafil-induced conformational change was temperature-sensitive, whereas cGMP-induced conformational change was independent of temperature. This indicates that different allosteric ligands can regulate the conformation of a multidomain protein by distinct mechanisms. Importantly, this novel PDE5 sensor has general physiological and clinical relevance because it allows the identification of regulators that can modulate PDE5 conformation in vivo.
Resumo:
Strain-rate effects on the low-cycle fatigue (LCF) behavior of a NIMONIC PE-16 superalloy have been evaluated in the temperature range of 523 to 923 K. Total-strain-controlled fatigue tests were per-formed at a strain amplitude of +/-0.6 pct on samples possessing two different prior microstructures: microstructure A, in the solution-annealed condition (free of gamma' and carbides); and microstructure B, in a double-aged condition with gamma' of 18-nm diameter and M23C6 carbides. The cyclic stress response behavior of the alloy was found to depend on the prior microstructure, testing temperature, and strain rate. A softening regime was found to be associated with shearing of ordered gamma' that were either formed during testing or present in the prior microstructure. Various manifestations of dynamic strain aging (DSA) included negative strain rate-stress response, serrations on the stress-strain hysteresis loops, and increased work-hardening rate. The calculated activation energy matched well with that for self-diffusion of Al and Ti in the matrix. Fatigue life increased with an increase in strain rate from 3 x 10(-5) to 3 x 10(-3) s-1, but decreased with further increases in strain rate. At 723 and 823 K and low strain rates, DSA influenced the deformation and fracture behavior of the alloy. Dynamic strain aging increased the strain localization in planar slip bands, and impingement of these bands caused internal grain-boundary cracks and reduced fatigue life. However, at 923 K and low strain rates, fatigue crack initiation and propagation were accelerated by high-temperature oxidation, and the reduced fatigue life was attributed to oxidation-fatigue interaction. Fatigue life was maximum at the intermediate strain rates, where strain localization was lower. Strain localization as a function of strain rate and temperature was quantified by optical and scanning electron microscopy and correlated with fatigue life.
Resumo:
This paper presents methodologies for fracture analysis of concrete structural components with and without considering tension softening effect. Stress intensity factor (SIF) is computed by using analytical approach and finite element analysis. In the analytical approach, SW accounting for tension softening effect has been obtained as the difference of SIP obtained using linear elastic fracture mechanics (LEFM) principles and SIP due to closing pressure. Superposition principle has been used by accounting for non-linearity in incremental form. SW due to crack closing force applied on the effective crack face inside the process zone has been computed using Green's function approach. In finite element analysis, the domain integral method has been used for computation of SIR The domain integral method is used to calculate the strain energy release rate and SIF when a crack grows. Numerical studies have been conducted on notched 3-point bending concrete specimen with and without considering the cohesive stresses. It is observed from the studies that SW obtained from the finite element analysis with and without considering the cohesive stresses is in good agreement with the corresponding analytical value. The effect of cohesive stress on SW decreases with increase of crack length. Further, studies have been conducted on geometrically similar structures and observed that (i) the effect of cohesive stress on SW is significant with increase of load for a particular crack length and (iii) SW values decreases with increase of tensile strength for a particular crack length and load.
Resumo:
A hyperconjugative influence may be an additional factor in Z-alkylation being promoted by a syn-axial ester in enolates formed from conformationally immobilised 6-cyclic beta-ketoesters.
Resumo:
The topological disposition of Wolfgram proteins (WP) and their relationship with 2', 3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) in human, rat, sheep, bovine, guinea pig and chicken CNS myelin was investigated. Controlled digestion of myelin with trypsin gave a 35KDa protein band (WP-t) when electrophoresed on dodecyl sulfate-polyacrylamide gel in all species. Western blot analysis showed that the WP-t was derived from WP. WP-t was also formed when rat myelin was treated with other proteases such as kallikrein, thermolysin and leucine aminopeptidase. Staining for CNPase activity on nitrocellulose blots showed that WP-t is enzymatically active. Much of the CNPase activity remained with the membrane fraction even after treatment with high concentrations of trypsin when WP were completely hydrolysed and no protein bands with M.W > 14KDa were detected on the gels. Therefore protein fragments of WP with M.W < 14KDa may contain CNPase activity. From these results, it is suggested that the topological disposition of all the various WP is such that a 35KDa fragment is embedded in the lipid bilayer and the remaining fragment exposed at the intraperiod line in the myelin structure which may play a role in the initiation of myelinogenesis.
Resumo:
A general and simple methodology for spirocyclopentannulation of cyclic ketones (or 4,4-disubstituted cyclopentenones from acyclic ketones) and its application in the synthesis of the spirodienone 7 via a prochiral precursor constituting a formal total synthesis of (+/-)-acorone (6), are described.
Resumo:
Rigorous elastic-plastic finite element analysis of joints subjected to cyclic loading is carried out. An incremental-iterative algorithm is developed in a modular form combining elasto-plastic material behaviour and contact stress analysis. For the case of the interference fit, the analysis sequentially carries out insertion of the pin and application of the load on the joint, covering possible initiation of separation (and/or yielding) and progressively the receding/advancing contact at the pin-plate interface. Deformations of both the plate and the pin are considered in the analysis. Numerical examples are presented for the case of an interference fit pin in a large plate under remote cyclic tension, and for an interference fit pin lug joint subjected to cyclic loading. A detailed study is carried out for the latter problem considering the effect of change in contact/separation at the pin-plate interface on local stresses, strains and redistribution of these stresses with the spread of a plastic zone. The results of the study are a useful input for the estimation of the fatigue life of joints. Copyright (C) 1996 Elsevier Science Ltd
Resumo:
2',3'-cyclic nucleotides are intermediates and substrates of Ribonuclease (RNase)-catalysed reactions. The characterization of the equilibrium conformation as well as the flexibility inherent in these molecules helps in understanding the enzymatic action of RNases. The present study explores parameters like phase angle, glycosydic torsion angle and hydrogen bond to find possible interrelationship between them through Molecular Dynamics (MD) simulations on 3'-GMP, 3'-UMP, A>p, G>p, U>p, C>p, GpA>p and UpA>p. Interesting results of the effect of cyclisation and other constraints such as hydrogen bond between certain groups on the equilibrium ribose conformation have emerged from this study.
Resumo:
Piperidinium tetrathiotungstate has been found to react with a number of 1,n-dihalo compounds to afford the corresponding cyclic disulfides in good yields, under mild reaction conditions. This new methodology has been used as a key step in the synthesis of (+/-)-lipoic acid (35) and asparagusic acid (37).
Resumo:
Linear Elastic Fracture Mechanics (LEFM) has been widely used in the past for fatigue crack growth studies, but this is acceptable only in situations which are within small scale yielding (SSY). In many practical structural components, conditions of SSY could be violated and one has to look for fracture criteria based on elasto-plastic analysis. Crack closure phenomenon, one of the most striking discoveries based on inelastic deformations during crack growth, has significant effect on fatigue crack growth rate. Numerical simulation of this phenomenon is computationally intensive and involved but has been successfully implemented. Stress intensity factors and strain energy release rates lose their meaning, J-integral (or its incremental) values are applicable only in specific situations, whereas alternate path independent integrals have been proposed in the literature for use with elasto-plastic fracture mechanics (EPFM) based criteria. This paper presents certain salient features of two independent finite element (numerical) studies of relevance to fatigue crack growth, where elasto-plastic analysis becomes significant. These problems can only be handled in the current day computational environment, and would have been only a dream just a few years ago.
Resumo:
We report a reversible phase transformation of platelet-shaped ZnS nanostructures between wurtzite (WZ) and zinc blende (ZB) phases by reversible insertion/ ejection of dopant Mn(II) ions induced by a thermocyclic process. In a reaction flask loaded with WZ ZnS platelets and Mn molecular precursors, during heating Mn ions are incorporated and change the phase of the host nanostructures to ZB; during cooling Mn ions are spontaneously ejected, returning the host nanoplatelets to the original WZ phase. These reversible changes are monitored for several cycles with PL, EPR, XRD, and HRTEM. Interestingly, the (0001) WZ platelets transform to (110) ZB following a nucleation and growth process triggered by a local increase/depletion of the Mn2+ concentration in the nanocrystals.