988 resultados para Cyclic Model
Resumo:
It is generally agreed that the mechanical environment of intervertebral disc cells plays an important role in maintaining a balanced matrix metabolism. The precise mechanism by which the signals are transduced into the cells is poorly understood. Osmotic changes in the extracellular matrix (ECM) are thought to be involved. Current in-vitro studies on this topic are mostly short-term and show conflicting data on the reaction of disc cells subjected to osmotic changes which is partially due to the heterogenous and often substantially-reduced culture systems. The aim of the study was therefore to investigate the effects of cyclic osmotic loading for 4 weeks on metabolism and matrix gene expression in a full-organ intervertebral disc culture system. Intervertebral disc/endplate units were isolated from New Zealand White Rabbits and cultured either in iso-osmotic media (335 mosmol/kg) or were diurnally exposed for 8 hours to hyper-osmotic conditions (485 mosmol/kg). Cell viability, metabolic activity, matrix composition and matrix gene expression profile (collagen types I/II and aggrecan) were monitored using Live/Dead cell viability assay, tetrazolium reduction test (WST 8), proteoglycan and DNA quantification assays and quantitative PCR. The results show that diurnal osmotic stimulation did not have significant effects on proteoglycan content, cellularity and disc cell viability after 28 days in culture. However, hyperosmolarity caused increased cell death in the early culture phase and counteracted up-regulation of type I collagen gene expression in nucleus and annulus cells. Moreover, the initially decreased cellular dehydrogenase activity recovered with osmotic stimulation after 4 weeks and aggrecan gene down-regulation was delayed, although the latter was not significant according to our statistical criteria. In contrast, collagen type II did not respond to the osmotic changes and was down-regulated in both groups. In conclusion, diurnal hyper-osmotic stimulation of a whole-organ disc/endplate culture partially inhibits a matrix gene expression profile as encountered in degenerative disc disease and counteracts cellular metabolic hypo-activity.
Resumo:
cAMP-response element binding (CREB) proteins are involved in transcriptional regulation in a number of cellular processes (e.g., neural plasticity and circadian rhythms). The CREB family contains activators and repressors that may interact through positive and negative feedback loops. These loops can be generated by auto- and cross-regulation of expression of CREB proteins, via CRE elements in or near their genes. Experiments suggest that such feedback loops may operate in several systems (e.g., Aplysia and rat). To understand the functional implications of such feedback loops, which are interlocked via cross-regulation of transcription, a minimal model with a positive and negative loop was developed and investigated using bifurcation analysis. Bifurcation analysis revealed diverse nonlinear dynamics (e.g., bistability and oscillations). The stability of steady states or oscillations could be changed by time delays in the synthesis of the activator (CREB1) or the repressor (CREB2). Investigation of stochastic fluctuations due to small numbers of molecules of CREB1 and CREB2 revealed a bimodal distribution of CREB molecules in the bistability region. The robustness of the stable HIGH and LOW states of CREB expression to stochastic noise differs, and a critical number of molecules was required to sustain the HIGH state for days or longer. Increasing positive feedback or decreasing negative feedback also increased the lifetime of the HIGH state, and persistence of this state may correlate with long-term memory formation. A critical number of molecules was also required to sustain robust oscillations of CREB expression. If a steady state was near a deterministic Hopf bifurcation point, stochastic resonance could induce oscillations. This comparative analysis of deterministic and stochastic dynamics not only provides insights into the possible dynamics of CREB regulatory motifs, but also demonstrates a framework for understanding other regulatory processes with similar network architecture.
Resumo:
The induction of late long-term potentiation (L-LTP) involves complex interactions among second-messenger cascades. To gain insights into these interactions, a mathematical model was developed for L-LTP induction in the CA1 region of the hippocampus. The differential equation-based model represents actions of protein kinase A (PKA), MAP kinase (MAPK), and CaM kinase II (CAMKII) in the vicinity of the synapse, and activation of transcription by CaM kinase IV (CAMKIV) and MAPK. L-LTP is represented by increases in a synaptic weight. Simulations suggest that steep, supralinear stimulus-response relationships between stimuli (e.g., elevations in [Ca(2+)]) and kinase activation are essential for translating brief stimuli into long-lasting gene activation and synaptic weight increases. Convergence of multiple kinase activities to induce L-LTP helps to generate a threshold whereby the amount of L-LTP varies steeply with the number of brief (tetanic) electrical stimuli. The model simulates tetanic, -burst, pairing-induced, and chemical L-LTP, as well as L-LTP due to synaptic tagging. The model also simulates inhibition of L-LTP by inhibition of MAPK, CAMKII, PKA, or CAMKIV. The model predicts results of experiments to delineate mechanisms underlying L-LTP induction and expression. For example, the cAMP antagonist RpcAMPs, which inhibits L-LTP induction, is predicted to inhibit ERK activation. The model also appears useful to clarify similarities and differences between hippocampal L-LTP and long-term synaptic strengthening in other systems.
Resumo:
cAMP-response element binding (CREB) proteins are involved in transcriptional regulation in a number of cellular processes (e.g., neural plasticity and circadian rhythms). The CREB family contains activators and repressors that may interact through positive and negative feedback loops. These loops can be generated by auto- and cross-regulation of expression of CREB proteins, via CRE elements in or near their genes. Experiments suggest that such feedback loops may operate in several systems (e.g., Aplysia and rat). To understand the functional implications of such feedback loops, which are interlocked via cross-regulation of transcription, a minimal model with a positive and negative loop was developed and investigated using bifurcation analysis. Bifurcation analysis revealed diverse nonlinear dynamics (e.g., bistability and oscillations). The stability of steady states or oscillations could be changed by time delays in the synthesis of the activator (CREB1) or the repressor (CREB2). Investigation of stochastic fluctuations due to small numbers of molecules of CREB1 and CREB2 revealed a bimodal distribution of CREB molecules in the bistability region. The robustness of the stable HIGH and LOW states of CREB expression to stochastic noise differs, and a critical number of molecules was required to sustain the HIGH state for days or longer. Increasing positive feedback or decreasing negative feedback also increased the lifetime of the HIGH state, and persistence of this state may correlate with long-term memory formation. A critical number of molecules was also required to sustain robust oscillations of CREB expression. If a steady state was near a deterministic Hopf bifurcation point, stochastic resonance could induce oscillations. This comparative analysis of deterministic and stochastic dynamics not only provides insights into the possible dynamics of CREB regulatory motifs, but also demonstrates a framework for understanding other regulatory processes with similar network architecture.
Resumo:
Patients suffering from cystic fibrosis (CF) show thick secretions, mucus plugging and bronchiectasis in bronchial and alveolar ducts. This results in substantial structural changes of the airway morphology and heterogeneous ventilation. Disease progression and treatment effects are monitored by so-called gas washout tests, where the change in concentration of an inert gas is measured over a single or multiple breaths. The result of the tests based on the profile of the measured concentration is a marker for the severity of the ventilation inhomogeneity strongly affected by the airway morphology. However, it is hard to localize underlying obstructions to specific parts of the airways, especially if occurring in the lung periphery. In order to support the analysis of lung function tests (e.g. multi-breath washout), we developed a numerical model of the entire airway tree, coupling a lumped parameter model for the lung ventilation with a 4th-order accurate finite difference model of a 1D advection-diffusion equation for the transport of an inert gas. The boundary conditions for the flow problem comprise the pressure and flow profile at the mouth, which is typically known from clinical washout tests. The natural asymmetry of the lung morphology is approximated by a generic, fractal, asymmetric branching scheme which we applied for the conducting airways. A conducting airway ends when its dimension falls below a predefined limit. A model acinus is then connected to each terminal airway. The morphology of an acinus unit comprises a network of expandable cells. A regional, linear constitutive law describes the pressure-volume relation between the pleural gap and the acinus. The cyclic expansion (breathing) of each acinus unit depends on the resistance of the feeding airway and on the flow resistance and stiffness of the cells themselves. Special care was taken in the development of a conservative numerical scheme for the gas transport across bifurcations, handling spatially and temporally varying advective and diffusive fluxes over a wide range of scales. Implicit time integration was applied to account for the numerical stiffness resulting from the discretized transport equation. Local or regional modification of the airway dimension, resistance or tissue stiffness are introduced to mimic pathological airway restrictions typical for CF. This leads to a more heterogeneous ventilation of the model lung. As a result the concentration in some distal parts of the lung model remains increased for a longer duration. The inert gas concentration at the mouth towards the end of the expirations is composed of gas from regions with very different washout efficiency. This results in a steeper slope of the corresponding part of the washout profile.
Resumo:
The Two State model describes how drugs activate receptors by inducing or supporting a conformational change in the receptor from “off” to “on”. The beta 2 adrenergic receptor system is the model system which was used to formalize the concept of two states, and the mechanism of hormone agonist stimulation of this receptor is similar to ligand activation of other seven transmembrane receptors. Hormone binding to beta 2 adrenergic receptors stimulates the intracellular production of cyclic adenosine monophosphate (cAMP), which is mediated through the stimulatory guanyl nucleotide binding protein (Gs) interacting with the membrane bound enzyme adenylylcyclase (AC). ^ The effects of cAMP include protein phosphorylation, metabolic regulation and transcriptional regulation. The beta 2 adrenergic receptor system is the most well known of its family of G protein coupled receptors. Ligands have been scrutinized extensively in search of more effective therapeutic agents at this receptor as well as for insight into the biochemical mechanism of receptor activation. Hormone binding to receptor is thought to induce a conformational change in the receptor that increases its affinity for inactive Gs, catalyzes the release of GDP and subsequent binding of GTP and activation of Gs. ^ However, some beta 2 ligands are more efficient at this transformation than others, and the underlying mechanism for this drug specificity is not fully understood. The central problem in pharmacology is the characterization of drugs in their effect on physiological systems, and consequently, the search for a rational scale of drug effectiveness has been the effort of many investigators, which continues to the present time as models are proposed, tested and modified. ^ The major results of this thesis show that for many b2 -adrenergic ligands, the Two State model is quite adequate to explain their activity, but dobutamine (+/−3,4-dihydroxy-N-[3-(4-hydroxyphenyl)-1-methylpropyl]- b -phenethylamine) fails to conform to the predictions of the Two State model. It is a weak partial agonist, but it forms a large amount of high affinity complexes, and these complexes are formed at low concentrations much better than at higher concentrations. Finally, dobutamine causes the beta 2 adrenergic receptor to form high affinity complexes at a much faster rate than can be accounted for by its low efficiency activating AC. Because the Two State model fails to predict the activity of dobutamine in three different ways, it has been disproven in its strictest form. ^
Resumo:
The influence of orbital precession on early Paleogene climate and ocean circulation patterns in the southeast Pacific region is investigated by combining environmental analyses of cyclic Middle Eocene sediments and palynomorph records recovered from ODP Hole 1172A on the East Tasman Plateau with climate model simulations. Integration of results indicates that in the marine realm, direct effects of precessional forcing are not pronounced, although increased precipitation/runoff could have enhanced dinoflagellate cyst production. On the southeast Australian continent, the most pronounced effects of precessional forcing were fluctuations in summer precipitation and temperature on the Antarctic Margin. These fluctuations resulted in vegetational changes, most notably in the distribution of Nothofagus (subgenus Brassospora). The climate model results suggest significant fluctuations in sea ice in the Ross Sea, notably during Austral summers. This is consistent with the influx of Antarctic heterotrophic dinoflagellates in the early part of the studied record. The data demonstrate a strong precessionally driven climate variability and thus support the concept that precessional forcing could have played a role in early Antarctic glaciation via changes in runoff and/or precipitation.
Resumo:
Numerous damage models have been developed in order to analyze seismic behavior. Among the different possibilities existing in the literature, it is very clear that models developed along the lines of continuum damage mechanics are more consistent with the definition of damage as a phenomenon with mechanical consequences because they include explicitly the coupling between damage and mechanical behavior. On the other hand, for seismic processes, phenomena such as low cycle fatigue may have a pronounced effect on the overall behavior of the frames and, therefore, its consideration turns out to be very important. However, most of existing models evaluate the damage only as a function of the maximum amplitude of cyclic deformation without considering the number of cycles. In this paper, a generalization of the simplified model proposed by Cipollina et al. [Cipollina A, López-Hinojosa A, Flórez-López J. Comput Struct 1995;54:1113–26] is made in order to include the low cycle fatigue. Such a model employs in its formulation irreversible thermodynamics and internal state variable theory.
Resumo:
To model strength degradation due to low cycle fatigue, at least three different approaches can be considered. One possibility is based on the formulation of a new free energy function and damage energy release rate, as was proposed by Ju(1989). The second approach uses the notion of bounding surface introduced in cyclic plasticity by Dafalias and Popov (1975). From this concept, some models have been proposed to quantify damage in concrete or RC (Suaris et al. 1990). The model proposed by the author to include fatigue effects is based essentially in Marigo (1985) and can be included in this approach.
Resumo:
The effect of infill walls on the behaviour of frames is widely recognized, and, for several decades now, has been the subject of numerous experimental investigations. However, the analytical modeling of infilled panels and frames under in-plane loading is difficult and generally unreliable. From the point of view of the simulation technique the models may be divided into micromodels and simplified (or macro-) models. Based on the equivalent strut approach (simplified model), in this paper a damage model is proposed for the characterization of masonry walls submitted to lateral cyclic loads. The model, developed along the lines of the Continuum Damage Mechanics, have the advantages of including explicitly the coupling between damage and mechanical behaviour and so is consistent with the definition of damage as a phenomenon with mechanical consequences.
Resumo:
Numerous damage models have been developed in order to analyse the seismic behavior. Among the different possibilities existing in the literature, it is very clear that models developed along the lines of Continuum Damage Mechanics are more consistent with the definition of damage like a phenomenon with mechanical consequences as they include explicitly the coupling between damage and mechanical behavior. On the other hand, for seismic processes, phenomena such as low cycle fatigue may have a pronounced effect on the overall behavior of the frames and, therefore, its consideration turns out to be very important. However, many of existing models evaluate the damage only as a function of the maximum amplitude of cyclic deformation without considering the number of cycles. In this paper, a generalization of the simplified model proposed by Flórez is made in order to include the low cycle fatigue. Such model employs in its formulation irreversible thermodynamics and internal state variable theory.
Resumo:
El agotamiento, la ausencia o, simplemente, la incertidumbre sobre la cantidad de las reservas de combustibles fósiles se añaden a la variabilidad de los precios y a la creciente inestabilidad en la cadena de aprovisionamiento para crear fuertes incentivos para el desarrollo de fuentes y vectores energéticos alternativos. El atractivo de hidrógeno como vector energético es muy alto en un contexto que abarca, además, fuertes inquietudes por parte de la población sobre la contaminación y las emisiones de gases de efecto invernadero. Debido a su excelente impacto ambiental, la aceptación pública del nuevo vector energético dependería, a priori, del control de los riesgos asociados su manipulación y almacenamiento. Entre estos, la existencia de un innegable riesgo de explosión aparece como el principal inconveniente de este combustible alternativo. Esta tesis investiga la modelización numérica de explosiones en grandes volúmenes, centrándose en la simulación de la combustión turbulenta en grandes dominios de cálculo en los que la resolución que es alcanzable está fuertemente limitada. En la introducción, se aborda una descripción general de los procesos de explosión. Se concluye que las restricciones en la resolución de los cálculos hacen necesario el modelado de los procesos de turbulencia y de combustión. Posteriormente, se realiza una revisión crítica de las metodologías disponibles tanto para turbulencia como para combustión, que se lleva a cabo señalando las fortalezas, deficiencias e idoneidad de cada una de las metodologías. Como conclusión de esta investigación, se obtiene que la única estrategia viable para el modelado de la combustión, teniendo en cuenta las limitaciones existentes, es la utilización de una expresión que describa la velocidad de combustión turbulenta en función de distintos parámetros. Este tipo de modelos se denominan Modelos de velocidad de llama turbulenta y permiten cerrar una ecuación de balance para la variable de progreso de combustión. Como conclusión también se ha obtenido, que la solución más adecuada para la simulación de la turbulencia es la utilización de diferentes metodologías para la simulación de la turbulencia, LES o RANS, en función de la geometría y de las restricciones en la resolución de cada problema particular. Sobre la base de estos hallazgos, el crea de un modelo de combustión en el marco de los modelos de velocidad de la llama turbulenta. La metodología propuesta es capaz de superar las deficiencias existentes en los modelos disponibles para aquellos problemas en los que se precisa realizar cálculos con una resolución moderada o baja. Particularmente, el modelo utiliza un algoritmo heurístico para impedir el crecimiento del espesor de la llama, una deficiencia que lastraba el célebre modelo de Zimont. Bajo este enfoque, el énfasis del análisis se centra en la determinación de la velocidad de combustión, tanto laminar como turbulenta. La velocidad de combustión laminar se determina a través de una nueva formulación capaz de tener en cuenta la influencia simultánea en la velocidad de combustión laminar de la relación de equivalencia, la temperatura, la presión y la dilución con vapor de agua. La formulación obtenida es válida para un dominio de temperaturas, presiones y dilución con vapor de agua más extenso de cualquiera de las formulaciones previamente disponibles. Por otra parte, el cálculo de la velocidad de combustión turbulenta puede ser abordado mediante el uso de correlaciones que permiten el la determinación de esta magnitud en función de distintos parámetros. Con el objetivo de seleccionar la formulación más adecuada, se ha realizado una comparación entre los resultados obtenidos con diversas expresiones y los resultados obtenidos en los experimentos. Se concluye que la ecuación debida a Schmidt es la más adecuada teniendo en cuenta las condiciones del estudio. A continuación, se analiza la importancia de las inestabilidades de la llama en la propagación de los frentes de combustión. Su relevancia resulta significativa para mezclas pobres en combustible en las que la intensidad de la turbulencia permanece moderada. Estas condiciones son importantes dado que son habituales en los accidentes que ocurren en las centrales nucleares. Por ello, se lleva a cabo la creación de un modelo que permita estimar el efecto de las inestabilidades, y en concreto de la inestabilidad acústica-paramétrica, en la velocidad de propagación de llama. El modelado incluye la derivación matemática de la formulación heurística de Bauwebs et al. para el cálculo de la incremento de la velocidad de combustión debido a las inestabilidades de la llama, así como el análisis de la estabilidad de las llamas con respecto a una perturbación cíclica. Por último, los resultados se combinan para concluir el modelado de la inestabilidad acústica-paramétrica. Tras finalizar esta fase, la investigación se centro en la aplicación del modelo desarrollado en varios problemas de importancia para la seguridad industrial y el posterior análisis de los resultados y la comparación de los mismos con los datos experimentales correspondientes. Concretamente, se abordo la simulación de explosiones en túneles y en contenedores, con y sin gradiente de concentración y ventilación. Como resultados generales, se logra validar el modelo confirmando su idoneidad para estos problemas. Como última tarea, se ha realizado un analisis en profundidad de la catástrofe de Fukushima-Daiichi. El objetivo del análisis es determinar la cantidad de hidrógeno que explotó en el reactor número uno, en contraste con los otros estudios sobre el tema que se han centrado en la determinación de la cantidad de hidrógeno generado durante el accidente. Como resultado de la investigación, se determinó que la cantidad más probable de hidrogeno que fue consumida durante la explosión fue de 130 kg. Es un hecho notable el que la combustión de una relativamente pequeña cantidad de hidrogeno pueda causar un daño tan significativo. Esta es una muestra de la importancia de este tipo de investigaciones. Las ramas de la industria para las que el modelo desarrollado será de interés abarca la totalidad de la futura economía de hidrógeno (pilas de combustible, vehículos, almacenamiento energético, etc) con un impacto especial en los sectores del transporte y la energía nuclear, tanto para las tecnologías de fisión y fusión. ABSTRACT The exhaustion, absolute absence or simply the uncertainty on the amount of the reserves of fossil fuels sources added to the variability of their prices and the increasing instability and difficulties on the supply chain are strong incentives for the development of alternative energy sources and carriers. The attractiveness of hydrogen in a context that additionally comprehends concerns on pollution and emissions is very high. Due to its excellent environmental impact, the public acceptance of the new energetic vector will depend on the risk associated to its handling and storage. Fromthese, the danger of a severe explosion appears as the major drawback of this alternative fuel. This thesis investigates the numerical modeling of large scale explosions, focusing on the simulation of turbulent combustion in large domains where the resolution achievable is forcefully limited. In the introduction, a general description of explosion process is undertaken. It is concluded that the restrictions of resolution makes necessary the modeling of the turbulence and combustion processes. Subsequently, a critical review of the available methodologies for both turbulence and combustion is carried out pointing out their strengths and deficiencies. As a conclusion of this investigation, it appears clear that the only viable methodology for combustion modeling is the utilization of an expression for the turbulent burning velocity to close a balance equation for the combustion progress variable, a model of the Turbulent flame velocity kind. Also, that depending on the particular resolution restriction of each problem and on its geometry the utilization of different simulation methodologies, LES or RANS, is the most adequate solution for modeling the turbulence. Based on these findings, the candidate undertakes the creation of a combustion model in the framework of turbulent flame speed methodology which is able to overcome the deficiencies of the available ones for low resolution problems. Particularly, the model utilizes a heuristic algorithm to maintain the thickness of the flame brush under control, a serious deficiency of the Zimont model. Under the approach utilized by the candidate, the emphasis of the analysis lays on the accurate determination of the burning velocity, both laminar and turbulent. On one side, the laminar burning velocity is determined through a newly developed correlation which is able to describe the simultaneous influence of the equivalence ratio, temperature, steam dilution and pressure on the laminar burning velocity. The formulation obtained is valid for a larger domain of temperature, steam dilution and pressure than any of the previously available formulations. On the other side, a certain number of turbulent burning velocity correlations are available in the literature. For the selection of the most suitable, they have been compared with experiments and ranked, with the outcome that the formulation due to Schmidt was the most adequate for the conditions studied. Subsequently, the role of the flame instabilities on the development of explosions is assessed. Their significance appears to be of importance for lean mixtures in which the turbulence intensity remains moderate. These are important conditions which are typical for accidents on Nuclear Power Plants. Therefore, the creation of a model to account for the instabilities, and concretely, the acoustic parametric instability is undertaken. This encloses the mathematical derivation of the heuristic formulation of Bauwebs et al. for the calculation of the burning velocity enhancement due to flame instabilities as well as the analysis of the stability of flames with respect to a cyclic velocity perturbation. The results are combined to build a model of the acoustic-parametric instability. The following task in this research has been to apply the model developed to several problems significant for the industrial safety and the subsequent analysis of the results and comparison with the corresponding experimental data was performed. As a part of such task simulations of explosions in a tunnel and explosions in large containers, with and without gradient of concentration and venting have been carried out. As a general outcome, the validation of the model is achieved, confirming its suitability for the problems addressed. As a last and final undertaking, a thorough study of the Fukushima-Daiichi catastrophe has been carried out. The analysis performed aims at the determination of the amount of hydrogen participating on the explosion that happened in the reactor one, in contrast with other analysis centered on the amount of hydrogen generated during the accident. As an outcome of the research, it was determined that the most probable amount of hydrogen exploding during the catastrophe was 130 kg. It is remarkable that the combustion of such a small quantity of material can cause tremendous damage. This is an indication of the importance of these types of investigations. The industrial branches that can benefit from the applications of the model developed in this thesis include the whole future hydrogen economy, as well as nuclear safety both in fusion and fission technology.
Resumo:
A form of two-dimensional (2D) vibrational spectroscopy, which uses two ultrafast IR laser pulses, is used to examine the structure of a cyclic penta-peptide in solution. Spectrally resolved cross peaks occur in the off-diagonal region of the 2D IR spectrum of the amide I region, analogous to those in 2D NMR spectroscopy. These cross peaks measure the coupling between the different amide groups in the structure. Their intensities and polarizations relate directly to the three-dimensional structure of the peptide. With the help of a model coupling Hamiltonian, supplemented by density functional calculations, the spectra of this penta-peptide can be regenerated from the known solution phase structure. This 2D-IR measurement, with an intrinsic time resolution of less than 1 ps, could be used in all time regimes of interest in biology.
Resumo:
Cyclic nucleotide-gated (CNG) channels present a unique model for studying the molecular mechanisms of channel gating. We have studied the mechanism of potentiation of expressed rod CNG channels by Ni2+ as a first step toward understanding the channel gating process. Here we report that coordination of Ni2+ between histidine residues (H420) on adjacent channel subunits occurs when the channels are open. Mutation of H420 to lysine completely eliminated the potentiation by Ni2+ but did not markedly alter the apparent cGMP affinity of the channel, indicating that the introduction of positive charge at the Ni(2+)-binding site was not sufficient to produce potentiation. Deletion or mutation of most of the other histidines present in the channel did not diminish potentiation by Ni2+. We studied the role of subunit interactions in Ni2+ potentiation by generating heteromultimeric channels using tandem dimers of the rod CNG channel sequence. Injection of single heterodimers in which one subunit contained H420 and the other did not (wt/H420Q or H420Q/wt) resulted in channels that were not potentiated by Ni2+. However, coinjection of both heterodimers into Xenopus oocytes resulted in channels that exhibited potentiation. The H420 residues probably occurred predominantly in nonadjacent subunits when each heterodimer was injected individually, but, when the two heterodimers were coinjected, the H420 residues could occur in adjacent subunits as well. These results suggest that the mechanism of Ni2+ potentiation involves intersubunit coordination of Ni2+ by H420. Based on the preferential binding of Ni2+ to open channels, we suggest that alignment of H420 residues of neighboring subunits into the Ni(2+)-coordinating position may be associated with channel opening.
Resumo:
Neurospora VS RNA performs an RNA-mediated self-cleavage reaction whose products contain 2',3'-cyclic phosphate and 5'-hydroxyl termini. This reaction is similar to those of hammerhead, hairpin, and hepatitis delta virus ribozymes; however, VS RNA is not similar in sequence to these other self-cleaving motifs. Here we propose a model for the secondary structure of the self-cleaving region of VS RNA, supported by site-directed mutagenesis and chemical modification structure probing data. The secondary structure of VS RNA is distinct from those of the other naturally occurring RNA self-cleaving domains. In addition to a unique secondary structure, several Mg-dependent interactions occur during the folding of VS RNA into its active tertiary conformation.