997 resultados para Cu atoms


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Density functional calculation at B3LYP level was employed to study the surface oxygen vacancies and the doping process of Co, Cu and Zn on SnO2 (110) surface models. Large clusters, based on (SnO2)(15) models, were selected to simulate the oxidized (Sn15O30), half-reduced (Sn15O29) and the reduced (Sn15O28) surfaces. The doping process was considered on the reduced surfaces: Sn13Co2O28, Sn13Cu2O28 and Sn13Zn2O28. The results are analyzed and discussed based on a calculation of the energy levels along the bulk band gap region, determined by a projection of the monoelectron level structure on to the atomic basis set and by the density of states. This procedure enables one to distinguish the states coming from the bulk, the oxygen vacancies and the doping process, on passing from an oxidized to a reduced surface, missing bridge oxygen atoms generate electronic levels along the band gap region, associated with 5s/5p of four-/five-fold Sn and 2p of in-plane O centers located on the exposed surface, which is in agreement with previous theoretical and experimental investigations. The formation energy of one and two oxygen vacancies is 3.0 and 3.9 eV, respectively. (C) 2001 Elsevier B.V. B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The eutectoid transformation may be defined as a solid-state diffusion-controlled decomposition process of a high-temperature phase into a two-phase lamellar aggregate behind a migrating boundary on cooling below the eutectoid temperature. In substitutional solid solutions, the eutectoid reaction involves diffusion of the solute atoms either through the matrix or along the boundaries or ledges. The effect of Ag on the non-isothermal kinetics of the reverse eutectoid reaction in the Cu-9 mass%Al, Cu-10 mass%Al, and Cu-11 mass%Al alloys were studied using differential scanning calorimetry (DSC), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The activation energy for this reaction was obtained using the Kissinger and Ozawa methods. The results indicated that Ag additions to Cu-Al alloys interfere on the reverse eutectoid reaction, increasing the activation energy values for the Cu-9 mass%Al and Cu-10 mass%Al alloys and decreasing these values for the Cu-11 mass%Al alloy for additions up to 6 mass%Ag. The changes in the activation energy were attributed to changes in the reaction solute and in Ag solubility due to the increase in Al content.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural, magnetic and spectroscopic data of a new trinuclear copper(II) complex with the ligand aspartame (apm) are described. [Cu(apm)(2)CU(mu-N,O:O'-apm)(2)(H2O)Cu(apm)(2)(H2O)]-5H(2)O crystallizes in the triclinic system, space group P1 (#1) with a = 7.3300(1) angstrom, b = 15.6840(1) angstrom, c = 21.5280(1) angstrom, alpha = 93.02(1)degrees, beta = 93.21 (1)degrees, gamma = 92.66(1)degrees and Z = 1. Aspartame coordinates to Cu(II) through the carboxylate and beta-amino groups. The carboxylate groups of the two central ligands act as bidentate bridges in a syn-anti conformation while the carboxylate groups of the four peripheral ligands are monodentate in a syn conformation. The central copper ion is in a distorted square pyramidal geometry with the apical position being occupied by one oxygen atom of the water molecule. The two terminal copper(II) atoms are coordinated to the ligands in the same position but their coordination sphere differs from each other due to the fact that one copper atom has a water molecule in an apical position leading to an octahedral coordination sphere while the other copper atom is exclusively coordinated to aspartame ligands forming a distorted square pyramidal coordination sphere. Thermal analysis is consistent with the X-ray structure. EPR spectra and CV curves indicate a rupture of the trinuclear framework when this complex is dissolved in ethanol or DMF, forming a mononuclear species, with a tetragonal structure. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Synthesis and characterization, including data on thermal decomposition, are reported for the complexes of S,S'-methylenebis(cysteine) (djenkolic acid) with copper(II), zinc(II) and cadmium(II): CuC(7)H(12)N(2)O(4)S(2) [I]; ZnC(7)H(12)N(2)O(4)S(2) [II] and CdC(7)H(12)N(2)O(4)S(2) [III] X-ray diffraction showed that the compounds are isostructural and belong to a monoclinic system. According to IR spectra, COO, NH(2) groups and bridging sulfur atoms are the main coordination sites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ca1+xCu3-xTi4O12 powders were synthesized by a conventional solid-state reaction. X-ray diffraction (XRD) was performed to verify the formation of cubic CaCu3Ti4O 12 (CCTO) and orthorhombic CaTiO3 (CTO) phases at long range. Rietveld refinements indicate that excess Ca atoms added to the Ca 1-xCu3-xTi4O12 (x = 1.0) composition segregated in a CaTiO3 secondary phase suggesting that solubility limit of Ca atoms in the CaCu3Ti4O12 lattice was reached for this system. The FE-SEM images show that the Ca 1+xCu3-xTi4O12 (0 < x < 3) powders are composed of several agglomerated particles with irregular morphology. X-ray absorption near-edge structure spectroscopy (XANES) spectra indicated [TiO5Vo z]-[TiO6] complex clusters in the CaCu3Ti4O12 structure which can be associated with oxygen vacancies (Vo z = V o x, Vo •, and Vo ••) whereas in the CaTiO3 powder, this analysis indicated [TiO6]-[TiO6] complex clusters in the structure. Ultraviolet-visible (UV-vis) spectra and photoluminescence (PL) measurements for the analyzed systems revealed structural defects such as oxygen vacancies, distortions, and/or strains in CaCu3Ti4O12 and CaTiO3 lattices, respectively. © 2012 The American Ceramic Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neste trabalho realizamos um estudo sobre a influência dos dopantes Mn+2, Mg+2 e Cu+2 nas estruturas cristalinas de cristais de Sulfato de Níquel hexahidratado (NSH) e L Asparagina Monohidratada (LAM). A introdução de dopantes em uma rede cristalina pode alterar suas propriedades físicas ou seu hábito de crescimento. Estas alterações podem favorecer as aplicações tecnológicas destes cristas em diversas áreas como medicina, agricultura, óptica e eletrônica. Os cristais de NSH foram crescidos pelo método da evaporação lenta do solvente e dopados com íons de Mn+2 e Mg+2, resultando em cristais de boa qualidade. Realizamos medidas de Difração de raios X de policristais nos cristais puros e dopados e a partir dos resultados obtidos fizemos refinamentos, usando o método de Rietiveld, onde foi observado que os cristais dopados apresentavam a mesma estrutura tetragonal e grupo espacial que o cristal puro, havendo uma pequena mudança em seus parâmetros de rede e volume de suas células unitárias. Observamos que a introdução de dopantes causou alterações nos comprimentos das ligações e nos ângulos entre os átomos de níquel e oxigênio, isso pode explicar porque as temperaturas de desidratação dos cristais de NSH:Mg e NSH:Mn são maiores que a do NSH puro. Usamos a técnica de Difração Mútipla de raios X com radiação síncroton em diferentes energias na estação de trabalho XRD1, do Laboratorio Nacional de Luz Síncroton (LNLS) a fim de identificarmos possíveis mudanças nas estruturas dos cristais dopados de Sulfato de Níquel e de L Asparagina. Os diagramas Renninger mostram mudanças na intensidade, perfil e posições dos picos secundários dos cristais dopados causadas pela introdução dos dopantes. Os cristais de L Asparagina Monohidratada foram crescidos pelo método da evaporação lenta do solvente, sendo dopados com íons de Cu+2. As medidas de difração múltipla mostram que o cristal dopado possui a mesma estrutura ortorrômbica que o cristal puro. Foram detectadas mudanças nas intensidades, assim como, nas posições e perfil de picos secundários no diagramas Renninger para o cristal dopado. Nossos resultados indicam que o mecanismo de incorporação dos íons de Cu+2 na rede cristalina da L Asparagina Monohidratada ocorre de forma intersticial.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The composite SmBa2Cu3O7-delta (Sm-123), obtained by the substitution of the ion Y for Sm in the very well known and studied YBa2Cu3O7-delta (Y-123), is potentially attractive for better understanding superconductivity mechanisms and for its applications as electronic devices. Sm-123 samples show higher critical temperatures than Y-123 ones do and a larger solubility of Sm in Ba-Cu-O solvent, which makes their growth process faster. When oxygen is present interstitially, it strongly affects the physical properties of the material. The dynamics of oxygen can be investigated by anelastic spectroscopy measurements, a powerful technique for the precise determination of the oscillation frequency and the internal friction when atomic jumps are possible. Anelastic spectroscopy allows determining the elasticity modulus (related to the oscillation frequency) and the elastic energy loss (related to the internal friction) as a function of the temperature. The sample was also investigated by X-ray diffraction (XRD), scanning electronic microscopy (SEM), and electric resistivity. The results obtained show a thermally activated relaxation structure composed by at least 3 relaxation processes. These processes may be attributed to the jumps of oxygen atoms present of the Cu-O plane in the orthorhombic phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since the discovery of YBaCuO, experiments have shown that its superconducting properties are strongly affected by the oxygen content. More recently, anelastic relaxation measurements in La2CuO4+δ, showed that the decrease in the oxygen content can be related to two events. One is the decrease in mobility between two adjacent CuO planes, and the other is the increase in the number of tilting patterns of the CuO6 octahedra. In the case of the bismuth-based ceramic, it is known that the oxygen content, within some limits, does not affect its superconducting properties. In order to evaluate the mobility and the effect of the oxygen content on this material we have prepared BSCCO ceramic and tested regarding its internal friction and electrical resistivity as a function of the temperature while the oxygen content was being reduced by a sequence of vacuum annelaing at 620 K. The samples were prepared in the Bi:Sr:Ca:Cu = 2212 and 2223 proportion, using powder obtained by the sol-gel route and conventional solid state reaction. The anelastic relaxation measurements were performed using a torsion pendulum operating with frequency about 15-35 Hz between 77 to 700 K. The diffraction pattern of the as sintered and the vacuum annealed material were also presented. The results have shown complex anelastic relaxation structures that were associated to the jump of interstitial oxygen atoms between two adjacent CuO planes. The vacuum annealing showed to be deleterious to the critical temperature of the superconducting ceramic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the fracture of nanocontacts gold spontaneously forms freely suspended chains of atoms, which is not observed for the isoelectronic noble metals Ag and Cu. Au also differs from Ag and Cu in forming reconstructions at its low-index surfaces. Using mechanically controllable break junctions we show that all the 5d metals that show similar reconstructions (Ir, Pt, and Au) also form chains of atoms, while both properties are absent in the 4d neighbor elements (Rh, Pd, and Ag), indicating a common origin for these two phenomena. A competition between s and d bonding is proposed as an explanation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We determine the phase diagram of the half-filled two-leg ladder both at weak and strong coupling, taking into account the Cu d(x)(2)-y(2) and the O p(x) and p(y) orbitals. At weak coupling, renormalization group flows are interpreted with the use of bosonization. Two different models with and without outer oxygen orbitals are examined. For physical parameters, and in the absence of the outer oxygen orbitals, the D-Mott phase arises; a dimerized phase appears when the outer oxygen atoms are included. We show that the circulating current phase that preserves translational symmetry does not appear at weak coupling. In the opposite strong-coupling atomic limit the model is purely electrostatic and the ground states may be found by simple energy minimization. The phase diagram so obtained is compared to the weak-coupling one.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The introduction of mesoporous nanosize zirconia to the catalyst for methanol synthesis dedicates the nanosized catalyst and mesoporous duplicated properties. The catalyst bears the larger surface area, larger mesoporous volume and more uniform diameter, more surface metal atoms and oxygen vacancies than the catalyst prepared with the conventional coprecipitation method. The modification of microstructure and electronic effect could result in the change of the reduced chemical state and decrease of reducuction temperature of copper, donating the higher activity and methanol selectivity to the catalyst. The results of methanol synthesis demonstrate that the Cu+ is the optimum active site. Also, the interaction between the copper and zirconia shows the synergistic effect to fulfil the methanol synthesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of economical heterogeneous catalysts for the activation of methane is a major challenge for the chemical industry. Screening potential candidates becomes more feasible using rational catalyst design to understand the activity of potential catalysts for CH4 activation. The focus of the present paper is the use of density functional theory to examine and elucidate the properties of doped CeO2. We dope with Cu and Zn transition metals having variable oxidation state (Cu), and a single oxidation state (Zn), and study the activation of methane. Zn is a divalent dopant and Cu can have a +1 or +2 oxidation state. Both Cu and Zn dopants have an oxidation state of +2 after incorporation into the CeO2 (111) surface; however a Hubbard +U correction (+U = 7) on the Cu 3d states is required to maintain this oxidation state when the surface interacts with adsorbed species. Dissociation of methane is found to occur locally at the dopant cations, and is thermodynamically and kinetically more favorable on Zn-doped CeO2 than Cu-doped CeO2. The origins of this lie with the Zn(II) dopant moving towards a square pyramidal geometry in the sub surface layer which facilitates the formation of two-coordinated surface oxygen atoms, that are more beneficial for methane activation on a reducible oxide surface. These findings can aid in rational experimental catalyst design for further exploration in methane activation processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A major focus of research in nanotechnology is the development of novel, high throughput techniques for fabrication of arbitrarily shaped surface nanostructures of sub 100 nm to atomic scale. A related pursuit is the development of simple and efficient means for parallel manipulation and redistribution of adsorbed atoms, molecules and nanoparticles on surfaces – adparticle manipulation. These techniques will be used for the manufacture of nanoscale surface supported functional devices in nanotechnologies such as quantum computing, molecular electronics and lab-on-achip, as well as for modifying surfaces to obtain novel optical, electronic, chemical, or mechanical properties. A favourable approach to formation of surface nanostructures is self-assembly. In self-assembly, nanostructures are grown by aggregation of individual adparticles that diffuse by thermally activated processes on the surface. The passive nature of this process means it is generally not suited to formation of arbitrarily shaped structures. The self-assembly of nanostructures at arbitrary positions has been demonstrated, though these have typically required a pre-patterning treatment of the surface using sophisticated techniques such as electron beam lithography. On the other hand, a parallel adparticle manipulation technique would be suited for directing the selfassembly process to occur at arbitrary positions, without the need for pre-patterning the surface. There is at present a lack of techniques for parallel manipulation and redistribution of adparticles to arbitrary positions on the surface. This is an issue that needs to be addressed since these techniques can play an important role in nanotechnology. In this thesis, we propose such a technique – thermal tweezers. In thermal tweezers, adparticles are redistributed by localised heating of the surface. This locally enhances surface diffusion of adparticles so that they rapidly diffuse away from the heated regions. Using this technique, the redistribution of adparticles to form a desired pattern is achieved by heating the surface at specific regions. In this project, we have focussed on the holographic implementation of this approach, where the surface is heated by holographic patterns of interfering pulsed laser beams. This implementation is suitable for the formation of arbitrarily shaped structures; the only condition is that the shape can be produced by holographic means. In the simplest case, the laser pulses are linearly polarised and intersect to form an interference pattern that is a modulation of intensity along a single direction. Strong optical absorption at the intensity maxima of the interference pattern results in approximately a sinusoidal variation of the surface temperature along one direction. The main aim of this research project is to investigate the feasibility of the holographic implementation of thermal tweezers as an adparticle manipulation technique. Firstly, we investigate theoretically the surface diffusion of adparticles in the presence of sinusoidal modulation of the surface temperature. Very strong redistribution of adparticles is predicted when there is strong interaction between the adparticle and the surface, and the amplitude of the temperature modulation is ~100 K. We have proposed a thin metallic film deposited on a glass substrate heated by interfering laser beams (optical wavelengths) as a means of generating very large amplitude of surface temperature modulation. Indeed, we predict theoretically by numerical solution of the thermal conduction equation that amplitude of the temperature modulation on the metallic film can be much greater than 100 K when heated by nanosecond pulses with an energy ~1 mJ. The formation of surface nanostructures of less than 100 nm in width is predicted at optical wavelengths in this implementation of thermal tweezers. Furthermore, we propose a simple extension to this technique where spatial phase shift of the temperature modulation effectively doubles or triples the resolution. At the same time, increased resolution is predicted by reducing the wavelength of the laser pulses. In addition, we present two distinctly different, computationally efficient numerical approaches for theoretical investigation of surface diffusion of interacting adparticles – the Monte Carlo Interaction Method (MCIM) and the random potential well method (RPWM). Using each of these approaches we have investigated thermal tweezers for redistribution of both strongly and weakly interacting adparticles. We have predicted that strong interactions between adparticles can increase the effectiveness of thermal tweezers, by demonstrating practically complete adparticle redistribution into the low temperature regions of the surface. This is promising from the point of view of thermal tweezers applied to directed self-assembly of nanostructures. Finally, we present a new and more efficient numerical approach to theoretical investigation of thermal tweezers of non-interacting adparticles. In this approach, the local diffusion coefficient is determined from solution of the Fokker-Planck equation. The diffusion equation is then solved numerically using the finite volume method (FVM) to directly obtain the probability density of adparticle position. We compare predictions of this approach to those of the Ermak algorithm solution of the Langevin equation, and relatively good agreement is shown at intermediate and high friction. In the low friction regime, we predict and investigate the phenomenon of ‘optimal’ friction and describe its occurrence due to very long jumps of adparticles as they diffuse from the hot regions of the surface. Future research directions, both theoretical and experimental are also discussed.