764 resultados para Critical thinking education
Resumo:
The terms ‘literacy’ and ‘technology’ remain highly contentious within the field of education. What is meant by ‘literacy’ and the methods used to measure it vary quite markedly in educational and historical contexts across the world. Similarly, while there is a shared concern to research the potential impact of new information and communication technologies (ICTs) on patterns of teaching and learning, there are major discrepancies about which aspects and uses of these technologies should be incorporated into formal learning environments and how this can be accomplished. While government policy makers tend to regard ICTs in relation to ideas of ‘smartness’, efficiency, and the ‘knowledge’ (or ‘new’) economy, educators and educational researchers promote them as offering new tools for learning and critical thinking and the development of new literacies and socio-cultural identities. This clearly has ramifications for the ways literacy is taught and conceptualised throughout the years of schooling, K-12. Outside school, meanwhile, students engage with ICTs on another level entirely, as tools for the maintenance of social networks, for leisure, and for learning and participating in the cultures of their peers. Whatever the differences in perspective, it remains the case that a society’s dominant understandings about literacy and technology will have significant implications for the development of school curriculum.
Resumo:
AIMS This paper reports on the implementation of a research project that trials an educational strategy implemented over six months of an undergraduate third year nursing curriculum. This project aims to explore the effectiveness of ‘think aloud’ as a strategy for learning clinical reasoning for students in simulated clinical settings. BACKGROUND Nurses are required to apply and utilise critical thinking skills to enable clinical reasoning and problem solving in the clinical setting [1]. Nursing students are expected to develop and display clinical reasoning skills in practice, but may struggle articulating reasons behind decisions about patient care. For students learning to manage complex clinical situations, teaching approaches are required that make these instinctive cognitive processes explicit and clear [2-5]. In line with professional expectations, nursing students in third year at Queensland University of Technology (QUT) are expected to display clinical reasoning skills in practice. This can be a complex proposition for students in practice situations, particularly as the degree of uncertainty or decision complexity increases [6-7]. The ‘think aloud’ approach is an innovative learning/teaching method which can create an environment suitable for developing clinical reasoning skills in students [4, 8]. This project aims to use the ‘think aloud’ strategy within a simulation context to provide a safe learning environment in which third year students are assisted to uncover cognitive approaches that best assist them to make effective patient care decisions, and improve their confidence, clinical reasoning and active critical reflection on their practice. MEHODS In semester 2 2011 at QUT, third year nursing students will undertake high fidelity simulation, some for the first time commencing in September of 2011. There will be two cohorts for strategy implementation (group 1= use think aloud as a strategy within the simulation, group 2= not given a specific strategy outside of nursing assessment frameworks) in relation to problem solving patient needs. Students will be briefed about the scenario, given a nursing handover, placed into a simulation group and an observer group, and the facilitator/teacher will run the simulation from a control room, and not have contact (as a ‘teacher’) with students during the simulation. Then debriefing will occur as a whole group outside of the simulation room where the session can be reviewed on screen. The think aloud strategy will be described to students in their pre-simulation briefing and allow for clarification of this strategy at this time. All other aspects of the simulations remain the same, (resources, suggested nursing assessment frameworks, simulation session duration, size of simulation teams, preparatory materials). RESULTS Methodology of the project and the challenges of implementation will be the focus of this presentation. This will include ethical considerations in designing the project, recruitment of students and implementation of a voluntary research project within a busy educational curriculum which in third year targets 669 students over two campuses. CONCLUSIONS In an environment of increasingly constrained clinical placement opportunities, exploration of alternate strategies to improve critical thinking skills and develop clinical reasoning and problem solving for nursing students is imperative in preparing nurses to respond to changing patient needs. References 1. Lasater, K., High-fidelity simulation and the development of clinical judgement: students' experiences. Journal of Nursing Education, 2007. 46(6): p. 269-276. 2. Lapkin, S., et al., Effectiveness of patient simulation manikins in teaching clinical reasoning skills to undergraduate nursing students: a systematic review. Clinical Simulation in Nursing, 2010. 6(6): p. e207-22. 3. Kaddoura, M.P.C.M.S.N.R.N., New Graduate Nurses' Perceptions of the Effects of Clinical Simulation on Their Critical Thinking, Learning, and Confidence. The Journal of Continuing Education in Nursing, 2010. 41(11): p. 506. 4. Banning, M., The think aloud approach as an educational tool to develop and assess clinical reasoning in undergraduate students. Nurse Education Today, 2008. 28: p. 8-14. 5. Porter-O'Grady, T., Profound change:21st century nursing. Nursing Outlook, 2001. 49(4): p. 182-186. 6. Andersson, A.K., M. Omberg, and M. Svedlund, Triage in the emergency department-a qualitative study of the factors which nurses consider when making decisions. Nursing in Critical Care, 2006. 11(3): p. 136-145. 7. O'Neill, E.S., N.M. Dluhy, and C. Chin, Modelling novice clinical reasoning for a computerized decision support system. Journal of Advanced Nursing, 2005. 49(1): p. 68-77. 8. Lee, J.E. and N. Ryan-Wenger, The "Think Aloud" seminar for teaching clinical reasoning: a case study of a child with pharyngitis. J Pediatr Health Care, 1997. 11(3): p. 101-10.
Resumo:
Health education in Western Countries has grown considerably in the last decade and this has occurred for a number of reasons. Specifically Universities actively recruit International students as the health workforce becomes global; also it is much easier for students to move and study globally. Internationally there is a health workforce shortage and if students gain a degree in a reputable university their ability to work globally is improved significantly. However, when studying to practice in the health care field the student must undertake clinical practice in an acute or aged care setting. This can be a significant problem for students who are culturally and linguistically diverse in an English speaking country such as Australia. The issues that can arise stem from the language differences where communication, interpretation understanding and reading the cultural norms of the health care setting are major challenges for International students. To assist international students to be successful in their clinical education, an extra curriculum workshop program was developed to provide additional support. The program which runs twice each year includes on-campus interactive workshops that are complemented by targeted support provided for students and clinical staff who are supervising students’ practice experience in the workplace. As this is an English speaking country the workshop is based on practicing reading, writing, listening and speaking, as well as exploring basic health care concepts and cultural differences. This enables students to gain knowledge of and practice interpretation of cultural norms and expectations in a safe environment. This innovative series of interactive workshops in a highly student-centred learning environment combine education with role play and discussion with peers who are supported by culturally aware and competent Educators. Over the years it has been running, the program has been undertaken by an increasing number of students. In 2011, more than 100 students are expected to participate. Student evaluation of the program has confirmed that it has assisted the majority of them to be successful in their clinical studies. Effectiveness of the project is measured throughout the program and in follow up sessions. This ongoing information allows for continuous development of the program that serves to meet individual needs of the International student, the University and Service providers such as the hospitals. This feedback from students regarding their increased comprehension of the Australian colloquial Language, healthcare terminology, critical thinking and clinical skill development and a cultural awareness also enables them to maintain their feelings of self confidence and self esteem.
Resumo:
Abstract: This paper reports on a preliminary investigation into the success of an undergraduate course, in helping preservice teachers at a regional university develop the skills and attitudes necessary to design inclusive learning environments that cater for, and celebrate, difference. The study is particularly relevant given recommendations by the Education Queensland Ministerial Taskforce (Queensland Government, 2004) that all pre-service teacher education programs must ensure that inclusive education is a pervasive theme. The paper starts by providing an overview of inclusive contexts and a rationale for inclusive education including critical elements. This leads into an overview of the undergraduate course EDED11400 Managing Diversity and discussion, based on feedback from the teaching team, on the capacity for the course to help pre-service teachers develop inclusive curriculum and pedagogical practices. The pedagogical framework Dimensions of Learning* is then discussed, with consideration given to whether this framework with its focus on critical thinking and habits of mind, might improve future learning outcomes in the course EDED11400 Managing Diversity. (*Dimensions of Learning is a pedagogical framework designed to teach thinking skills (Marzano et al., 1988). It explores five types of thinking represented in the framework by five dimensions of learning.)
Resumo:
This paper presents some theoretical perspectives that might inform the design and development of information and communications technology (ICT) tools to support integrated (in-session) reflection and deep learning during e-learning. The role of why questioning provides the focus of discussion and is informed by the literature on critical thinking, sense-making, and reflective practice, as well as recent developments in knowledge management, computational linguistics and automated question generation. It is argued that there exists enormous scope for the development of ICT scaffolding targeted at supporting reflective practice during e-learning. The first generations of e-Portfolio tools provide some evidence for the significance of the benefits of integrating reflection into the design of ICT systems; however, following the review of a number of such systems, as well as a range of ICT applications and services designed to support e-learning, it is argued that the scope of implementation is limited.
Resumo:
This chapter discusses a range of issues associated with supporting inquiry and deep reasoning while utilising information and communications technology (ICT). The role of questioning in critical thinking and reflection is considered in the context of scaffolding and new opportunities for ICT-enabled scaffolding identified. In particular, why-questioning provides a key point of focus and is presented as an important consideration in the design of systems that not only require cognitive engagement but aim to nurture it. Advances in automated question generation within intelligent tutoring systems are shown to hold promise for both teaching and learning in a range of other applications. While shortening attention spans appear to be a hazard of engaging with digital media cognitive engagement is presented as something with broader scope than attention span and is best conceived of as a crucible within which a rich mix of cognitive activities take place and from which new knowledge is created.
Resumo:
This article introduces a model for group facilitation in the humanities based on Carl Rogers’s model for group psychotherapy. Certain aspects of Rogers’s reflective learning strategies are re-appraised and principles, specific only to psychotherapy, are introduced. Five of Rogers’s axioms are applied to the tutorial discussion model: a non-directive approach, climate-setting, facilitation, reflective listening and positive regard. The model, which has been trialed in tutorials at The University of Queensland, encourages self-direction, active learning and critical thinking.
Resumo:
Sound Thinking provides techniques and approaches to critically listen, think, talk and write about music you hear or make. It provides tips on making music and it encourages regular and deep thinking about music activities, which helps build a musical dialog that leads to deeper understanding.
Resumo:
The literature supporting the notion that active, student-centered learning is superior to passive, teacher-centered instruction is encyclopedic (Bonwell & Eison, 1991; Bruning, Schraw, & Ronning, 1999; Haile, 1997a, 1997b, 1998; Johnson, Johnson, & Smith, 1999). Previous action research demonstrated that introducing a learning activity in class improved the learning outcomes of students (Mejias, 2010). People acquire knowledge and skills through practice and reflection, not by watching and listening to others telling them how to do something. In this context, this project aims to find more insights about the level of interactivity in the curriculum a class should have and its alignment with assessment so the intended learning outcomes (ILOs) are achieved. In this project, interactivity is implemented in the form of problem- based learning (PBL). I present the argument that a more continuous formative feedback when implemented with the correct amount of PBL stimulates student engagement bringing enormous benefits to student learning. Different levels of practical work (PBL) were implemented together with two different assessment approaches in two subjects. The outcomes were measured using qualitative and quantitative data to evaluate the levels of student engagement and satisfaction in the terms of ILOs.
Resumo:
In the university education arena, it is becoming apparent that traditional methods of conducting classes are not the most effective ways to achieve desired learning outcomes. The traditional class/method involves the instructor verbalizing information for passive, note-taking students who are assumed to be empty receptacles waiting to be filled with knowledge. This method is limited in its effectiveness, as the flow of information is usually only in one direction. Furthermore, “It has been demonstrated that students in many cases can recite and apply formulas in numerical problems, but the actual meaning and understanding of the concept behind the formula is not acquired (Crouch & Mazur)”. It is apparent that memorization is the main technique present in this approach. A more effective method of teaching involves increasing the students’ level of activity during, and hence their involvement in the learning process. This technique stimulates self- learning and assists in keeping these students’ levels of concentration more uniform. In this work, I am therefore interested in studying the influence of a particular TLA on students’ learning-outcomes. I want to foster high-level understanding and critical thinking skills using active learning (Silberman, 1996) techniques. The TLA in question aims to promote self-study by students and to expose them to a situation where their learning-outcomes can be tested. The motivation behind this activity is based on studies which suggest that some sensory modalities are more effective than others. Using various instruments for data collection and by means of a thorough analysis I present evidence of the effectiveness of this action research project which aims to improve my own teaching practices, with the ultimate goal of enhancing student’s learning.
Resumo:
The development of the Learning and Teaching Academic Standards Statement for Architecture (the Statement) centred on requirements for the Master of Architecture and proceeded alongside similar developments in the building and construction discipline under the guidance and support of the Australian Deans of Built Environment and Design (ADBED). Through their representation of Australian architecture programs, ADBED have provided high-level leadership for the Learning and Teaching Academic Standards Project in Architecture (LTAS Architecture). The threshold learning outcomes (TLOs), the description of the nature and extent of the discipline, and accompanying notes were developed through wide consultation with the discipline and profession nationally. They have been considered and debated by ADBED on a number of occasions and have, in their fi nal form, been strongly endorsed by the Deans. ADBED formed the core of the Architecture Reference Group (chaired by an ADBED member) that drew together representatives of every peak organisation for the profession and discipline in Australia. The views of the architectural education community and profession have been provided both through individual submissions and the voices of a number of peak bodies. Over two hundred individuals from the practising profession, the academic workforce and the student cohort have worked together to build consensus about the capabilities expected of a graduate of an Australian Master of Architecture degree. It was critical from the outset that the Statement should embrace the wisdom of the greater ‘tribe’, should ensure that graduates of the Australian Master of Architecture were eligible for professional registration and, at the same time, should allow for scope and diversity in the shape of Australian architectural education. A consultation strategy adopted by the Discipline Scholar involved meetings and workshops in Perth, Melbourne, Sydney, Canberra and Brisbane. Stakeholders from all jurisdictions and most universities participated in the early phases of consultation through a series of workshops that concluded late in October 2010. The Draft Architecture Standards Statement was formed from these early meetings and consultation in respect of that document continued through early 2011. This publication represents the outcomes of work to establish an agreed standards statement for the Master of Architecture. Significant further work remains to ensure the alignment of professional accreditation and recognition procedures with emerging regulatory frameworks cascading from the establishment of the Tertiary Education Quality and Standards Agency (TEQSA). The Australian architecture community hopes that mechanisms can be found to integrate TEQSA’s quality assurance purpose with well-established and understood systems of professional accreditation to ensure the good standing of Australian architectural education into the future. The work to build renewed and integrated quality assurance processes and to foster the interests of this project will continue, for at least the next eighteen months, under the auspices of Australian Learning and Teaching Council (ALTC)-funded Architecture Discipline Network (ADN), led by ADBED and Queensland University of Technology. The Discipline Scholar gratefully acknowledges the generous contributions given by those in stakeholder communities to the formulation of the Statement. Professional and academic colleagues have travelled and gathered to shape the Standards Statement. Debate has been vigorous and spirited and the Statement is rich with the purpose, critical thinking and good judgement of the Australian architectural education community. The commitments made to the processes that have produced this Statement reflect a deep and abiding interest by the constituency in architectural education. This commitment bodes well for the vibrancy and productivity of the emergent Architecture Discipline Network (ADN). Endorsement, in writing, was received from the Australian Institute of Architects National Education Committee (AIA NEC): The National Education Committee (NEC) of the Australian Institute of Architects thank you for your work thus far in developing the Learning and Teaching Academic Standards for Architecture In particular, we acknowledge your close consultation with the NEC on the project along with a comprehensive cross-section of the professional and academic communities in architecture. The TLOs with the nuanced levels of capacities – to identify, develop, explain, demonstrate etc – are described at an appropriate level to be understood as minimum expectations for a Master of Architecture graduate. The Architects Accreditation Council of Australia (AACA) has noted: There is a clear correlation between the current processes for accreditation and what may be the procedures in the future following the current review. The requirement of the outcomes as outlined in the draft paper to demonstrate capability is an appropriate way of expressing the measure of whether the learning outcomes have been achieved. The measure of capability as described in the outcome statements is enhanced with explanatory descriptions in the accompanying notes.
Resumo:
The concept of being evidence based or evidence informed is widely acknowledged as an important component of decision-making. It is perhaps most universally referred to in medicine, however has extended into many other disciplines over the past decade, including public health. Evidence-based public health has been defined as the ‘conscientious, explicit and judicious use of current best evidence in making decisions about the care of communities and populations in the domain of health protection, disease prevention, health maintenance and improvement (health promotion)’.1 More recent literature favours the use of the term evidence informed over evidence based to acknowledge the varying influences on decisions in this complex field.2,3 Evidence-informed activities in any discipline require a specific set of skills in critical thinking. These skills include identifying the questions to be resolved, collecting relevant evidence, and assessing, synthesizing and distilling evidence in a way that can inform the set of activities to be undertaken as a result.
Resumo:
Integrating Science, Technology, Engineering and Mathematics (STEM) subjects can be engaging for students, can promote problem-solving and critical thinking skills and can help build real-world connections. However, STEM has long been an area of some confusion for some educators. While they can see many of the conceptual links between the various domains of knowledge they often struggle to meaningfully integrate and simultaneously teach the content and methodologies of each these areas in a unified and effective way for their students. Essentially the question is;how can the content and processes of four disparate and yet integrated learning areas be taught at the same time? How can the integrity of each of the areas be maintained and yet be learnt in a way that is complementary? Often institutional barriers exitin schools and universities to the integration of STEM. Organizationally, at a departmental and administrative level, the teaching staff may be co-located, but when it comes to classroom practice or the teaching and learning of these areas they are usually taught very separately. They are usually taught in different kinds of spaces, in different ways (using different pedagogical approaches) and at different times. But is this the best way for students to engage with the STEM areas of learning? How can we make learning more integrated, meaningful and engaging for the students?