925 resultados para Crack Tip Opening Displacement (Ctod)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, an axisymmetric two-dimensional finite element model was developed to simulate instrumented indentation testing of thin ceramic films deposited onto hard steel substrates. The level of film residual stress (sigma(r)), the film elastic modulus (E) and the film work hardening exponent (n) were varied to analyze their effects on indentation data. These numerical results were used to analyze experimental data that were obtained with titanium nitride coated specimens, in which the substrate bias applied during deposition was modified to obtain films with different levels of sigma(r). Good qualitative correlation was obtained when numerical and experimental results were compared, as long as all film properties are considered in the analyses, and not only sigma(r). The numerical analyses were also used to further understand the effect of sigma(r) on the mechanical properties calculated based on instrumented indentation data. In this case, the hardness values obtained based on real or calculated contact areas are similar only when sink-in occurs, i.e. with high n or high ratio VIE, where Y is the yield strength of the film. In an additional analysis, four ratios (R/h(max)) between indenter tip radius and maximum penetration depth were simulated to analyze the combined effects of R and sigma(r) on the indentation load-displacement curves. In this case, or did not significantly affect the load curve exponent, which was affected only by the indenter tip radius. On the other hand, the proportional curvature coefficient was significantly affected by sigma(r) and n. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work describes a model for the determination of the moment–rotation relationship of a cross section of fiber reinforced concrete (FRC) elements that also include longitudinal bars for the flexural reinforcement (R/FRC). Since a stress–crack width relationship (σ–w)(σ–w) is used to model the post-cracking behavior of a FRC, the σ–w directly obtained from tensile tests, or derived from inverse analysis applied to the results obtained in three-point notched beam bending tests, can be adopted in this approach. For a more realistic assessment of the crack opening, a bond stress versus slip relationship is assumed to simulate the bond between longitudinal bars and surrounding FRC. To simulate the compression behavior of the FRC, a shear friction model is adopted based on the physical interpretation of the post-peak compression softening behavior registered in experimental tests. By allowing the formation of a compressive FRC wedge delimited by shear band zones, the concept of concrete crushing failure mode in beams failing in bending is reinterpreted. By using the moment–rotation relationship, an algorithm was developed to determine the force–deflection response of statically determinate R/FRC elements. The model is described in detail and its good predictive performance is demonstrated by using available experimental data. Parametric studies were executed to evidence the influence of relevant parameters of the model on the serviceability and ultimate design conditions of R/FRC elements failing in bending.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to investigate the out-of-plane behaviour of masonry infill walls, quasi-static testing was performed on a masonry infill walls built inside a reinforced concrete frame by means of an airbag system to apply the uniform out-of-plane load to each component of the infill. The main advantage of this testing setup is that the out-of-plane loading can be applied more uniformly in the walls, contrarily to point load configuration. The test was performed under displacement control by selecting the mid-point of the infill as control point. Input and output air in the airbag was controlled by using a software to apply a specific displacement in the control point of the infill wall. The effect of the distance between the reaction frame of the airbag and the masonry infill on the effective contact area was previously analysed. Four load cells were attached to the reaction frame to measure the out-of-plane force. The effective contact area of the airbag was calculated by dividing the load measured in load cells by the pressure inside the airbag. When the distance between the reaction walls and the masonry infill wall is smaller, the effective area is closer to the nominal area of the airbag. Deformation and crack patterns of the infill confirm the formation of arching mechanism and two-way bending of the masonry infill. Until collapse of the horizontal interface between infill and upper beam in RC frame, the infill bends in two directions but the failure of that interface which is known as weakest interface due to difficulties in filling the mortar between bricks of last row and upper beam results in the crack opening trough a well-defined path and the consequent collapse of the infill.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seismic investigations of typical south European masonry infilled frames were performed by testing two reduced scale specimens: one in the in-plane direction and another in the out-ofplane direction. Information about geometry and reinforcement scheme of those structures constructed in 1980s were obtained by [1]. The specimen to be tested in the in-plane direction was constructed as double leaf masonry while the specimen for testing in the out-of-plane direction is constructed with only its exterior leaf since the recent earthquakes have highlighted the vulnerability of the external leaf of the infills in out-of-plane direction [2]. The tests were performed by applying the pre-defined values of displacements in the in-plane and out-of-plane directions in the control points. For in-plane testing it was done by hydraulic actuator and for out-of-plane testing through the application of an airbag. Input and output air in the airbag was controlled by using a software to apply a specific displacement in the control point of the infill wall. Mid-point of the infill was assumed as a control point for outof- plane testing. Deformation and crack patterns of the infill confirm the formation of two-way arching mechanism of the masonry infill until collapse of the upper horizontal interface between infill and frame which is known as weakest interface due to difficulties in filling the mortar between bricks of last row and upper beam. This results in the crack opening through a welldefined path and the consequent collapse of the infill.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tension-band wiring is a recognised standard treatment for fixation of olecranon fractures. The classical operation technique is well known and widespread among the orthopaedic surgeons. Nevertheless complications like K-wire migration or skin perforation and difficult technical as well as anatomical prerequisites require better-adapted operation fixation methods. In older female patients a cut through of the Kirschner wires with concomitant secondary displacement was observed. We intent to develop a new, better adapted operation technique for olecranon fractures in the old patients, in order to decrease complications and follow-up procedures. In this study we compare two different K-wire positions: 10 models of the classical AO tension-banding to 10 models with adapted K-wire insertion. In this group the K-wire passes from the tip of the olecranon to the posterior cortical of the distal fragment of the ulna. We tested maximal failure load, maximal opening angle as well as maximal work to achieve maximal force. In either technique we were able to determine different variables: a maximal failure load of more than 600N (p = 0.94) for both fixation methods and a maximal opening angle for both techniques of about 10° (p = 0.86). To achieve the maximal force our modified technique required a slightly increased work (p = 0.16). In this study no statistical significant differences between the two fixation techniques was shown. This leads to the conclusion that the modified version is comparable to the classical operation technique considering the stability, but due to the adaption of the angle in the modified procedure, less lesions of neurovascular structures on the volar side can be expected. To support our findings cadaver studies are needed for further investigations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Singularities of elastic and electric fields are investigated at the tip of a crack on the interface of two anisotropic piezo-electric media under various boundary conditions on the crack surfaces. The Griffith formulae are obtained for increments of energy functionals due to growth of the crack and the notion of the energy release matrix is introduced. Normalization conditions for bases of singular solution are proposed to adapt them to the energy, stress, and deformation fracture criteria. Connections between these bases are determined and additional properties of the deformation basis related to the notion of electric surface enthalpy are established.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study provides further developments of the evaluation procedure for J and CTOD in SE(T) fracture specimens based on plastic eta-factors and load separation analysis. Non-linear finite element analyses for plane-strain and 3-D models provide the relationship between plastic work and crack driving forces which define the eta-values. Further analyses based on the load separation method define alternative eta-values for the analyzed specimen configurations. Overall, the present results provide improved estimation equations for J and CTOD as a function of loading condition (pin load vs. clamp ends), crack geometry and strain hardening properties. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE. To study changes in lamina cribrosa position and prelaminar tissue thickness (PTT) after surgical IOP reduction in glaucoma patients. METHODS. Twenty-two patients (mean age, 71.4 years) were imaged with spectral domain optical coherence tomography (SD-OCT; 24 radial B-scans centered on the optic nerve head [ONH]) before trabeculectomy or tube shunt implantation. Follow up images were acquired 1 week, 1 month, 3 months, and 6 months postsurgery. Bruch's membrane opening (BMO), the internal limiting membrane (ILM) and the anterior laminar surface (ALS) were segmented in each radial scan with custom software. Surfaces were fitted to the ILM and ALS with the extracted three-dimesional coordinates. PTT was the distance between the ILM and ALS, perpendicular to a BMO reference plane. Serial postsurgical laminar displacement (LD), relative to the BMO reference plane, and changes in PTT were measured. Positive values indicated anterior LD. RESULTS. Mean (SD) presurgery IOP was 18.1 (6.5) mm Hg, and reduced by 4.7 (5.5), 2.4 (7.7), 7.0 (6.2), and 6.8 (7.5) mm Hg at 1 week, 1 month, 3 months, and 6 months postsurgery, respectively. At the four postsurgery time points, there was significant anterior LD (1.8 [9.5], -1.1 [8.9], 8.8 [20.2], and 17.9 [25.8] mu m) and PTT increase (1.7 [13.3], 2.4 [11.9], 17.4 [13.7], and 13.9 [18.6] mu m). LD was greater in ONHs with larger BMO area (P = 0.01) and deeper ALS (P = 0.04); however, PTT was not associated with any of the tested independent variables. CONCLUSIONS. Both anterior LD and thickening of prelaminar tissue occur after surgical IOP reduction in patients with glaucoma. (Invest Ophthalmol Vis Sci. 2012;53:5819-5826) DOI:10.1167/iovs.12-9924

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents an investigation of the ductile tearing properties for a girth weld made of an API 5L X80 pipeline steel using experimentally measured crack growth resistance curves. Use of these materials is motivated by the increasing demand in the number of applications for manufacturing high strength pipes for the oil and gas industry including marine applications and steel catenary risers. Testing of the pipeline girth welds employed side-grooved, clamped SE(T) specimens and shallow crack bend SE(B) specimens with a weld centerline notch to determine the crack growth resistance curves based upon the unloading compliance (UC) method using the single specimen technique. Recently developed compliance functions and η-factors applicable for SE(T) and SE(B) fracture specimens with homogeneous material and overmatched welds are introduced to determine crack growth resistance data from laboratory measurements of load-displacement records.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Piezoelectrics present an interactive electromechanical behaviour that, especially in recent years, has generated much interest since it renders these materials adapt for use in a variety of electronic and industrial applications like sensors, actuators, transducers, smart structures. Both mechanical and electric loads are generally applied on these devices and can cause high concentrations of stress, particularly in proximity of defects or inhomogeneities, such as flaws, cavities or included particles. A thorough understanding of their fracture behaviour is crucial in order to improve their performances and avoid unexpected failures. Therefore, a considerable number of research works have addressed this topic in the last decades. Most of the theoretical studies on this subject find their analytical background in the complex variable formulation of plane anisotropic elasticity. This theoretical approach bases its main origins in the pioneering works of Muskelishvili and Lekhnitskii who obtained the solution of the elastic problem in terms of independent analytic functions of complex variables. In the present work, the expressions of stresses and elastic and electric displacements are obtained as functions of complex potentials through an analytical formulation which is the application to the piezoelectric static case of an approach introduced for orthotropic materials to solve elastodynamics problems. This method can be considered an alternative to other formalisms currently used, like the Stroh’s formalism. The equilibrium equations are reduced to a first order system involving a six-dimensional vector field. After that, a similarity transformation is induced to reach three independent Cauchy-Riemann systems, so justifying the introduction of the complex variable notation. Closed form expressions of near tip stress and displacement fields are therefore obtained. In the theoretical study of cracked piezoelectric bodies, the issue of assigning consistent electric boundary conditions on the crack faces is of central importance and has been addressed by many researchers. Three different boundary conditions are commonly accepted in literature: the permeable, the impermeable and the semipermeable (“exact”) crack model. This thesis takes into considerations all the three models, comparing the results obtained and analysing the effects of the boundary condition choice on the solution. The influence of load biaxiality and of the application of a remote electric field has been studied, pointing out that both can affect to a various extent the stress fields and the angle of initial crack extension, especially when non-singular terms are retained in the expressions of the electro-elastic solution. Furthermore, two different fracture criteria are applied to the piezoelectric case, and their outcomes are compared and discussed. The work is organized as follows: Chapter 1 briefly introduces the fundamental concepts of Fracture Mechanics. Chapter 2 describes plane elasticity formalisms for an anisotropic continuum (Eshelby-Read-Shockley and Stroh) and introduces for the simplified orthotropic case the alternative formalism we want to propose. Chapter 3 outlines the Linear Theory of Piezoelectricity, its basic relations and electro-elastic equations. Chapter 4 introduces the proposed method for obtaining the expressions of stresses and elastic and electric displacements, given as functions of complex potentials. The solution is obtained in close form and non-singular terms are retained as well. Chapter 5 presents several numerical applications aimed at estimating the effect of load biaxiality, electric field, considered permittivity of the crack. Through the application of fracture criteria the influence of the above listed conditions on the response of the system and in particular on the direction of crack branching is thoroughly discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On the basis of well-known literature, an analytical tool named LEAF (Linear Elastic Analysis of Fracture) was developed to predict the Damage Tolerance (DT) proprieties of aeronautical stiffened panels. The tool is based on the linear elastic fracture mechanics and the displacement compatibility method. By means of LEAF, an extensive parametric analysis of stiffened panels, representative of typical aeronautical constructions, was performed to provide meaningful design guidelines. The effects of riveted, integral and adhesively bonded stringers on the fatigue crack propagation performances of stiffened panels were investigated, as well as the crack retarder contribution using metallic straps (named doublers) bonded in the middle of the stringers bays. The effect of both perfectly bonded and partially debonded doublers was investigated as well. Adhesively bonded stiffeners showed the best DT properties in comparison with riveted and integral ones. A great reduction of the skin crack growth propagation rate can be achieved with the adoption of additional doublers bonded between the stringers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Volcán Pacaya is one of three currently active volcanoes in Guatemala. Volcanic activity originates from the local tectonic subduction of the Cocos plate beneath the Caribbean plate along the Pacific Guatemalan coast. Pacaya is characterized by generally strombolian type activity with occasional larger vulcanian type eruptions approximately every ten years. One particularly large eruption occurred on May 27, 2010. Using GPS data collected for approximately 8 years before this eruption and data from an additional three years of collection afterwards, surface movement covering the period of the eruption can be measured and used as a tool to help understand activity at the volcano. Initial positions were obtained from raw data using the Automatic Precise Positioning Service provided by the NASA Jet Propulsion Laboratory. Forward modeling of observed 3-D displacements for three time periods (before, covering and after the May 2010 eruption) revealed that a plausible source for deformation is related to a vertical dike or planar surface trending NNW-SSE through the cone. For three distinct time periods the best fitting models describe deformation of the volcano: 0.45 right lateral movement and 0.55 m tensile opening along the dike mentioned above from October 2001 through January 2009 (pre-eruption); 0.55 m left lateral slip along the dike mentioned above for the period from January 2009 and January 2011 (covering the eruption); -0.025 m dip slip along the dike for the period from January 2011 through March 2013 (post-eruption). In all bestfit models the dike is oriented with a 75° westward dip. These data have respective RMS misfit values of 5.49 cm, 12.38 cm and 6.90 cm for each modeled period. During the time period that includes the eruption the volcano most likely experienced a combination of slip and inflation below the edifice which created a large scar at the surface down the northern flank of the volcano. All models that a dipping dike may be experiencing a combination of inflation and oblique slip below the edifice which augments the possibility of a westward collapse in the future.