984 resultados para Cooling rate


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Based on theoretical arguments we propose a possible route for controlling the band-gap in the promising photovoltaic material CdIn2S4. Our ab initio calculations show that the experimental degree of inversion in this spinel (fraction of tetrahedral sites occupied by In) corresponds approximately to the equilibrium value given by the minimum of the theoretical inversion free energy at a typical synthesis temperature. Modification of this temperature, or of the cooling rate after synthesis, is then expected to change the inversion degree, which in turn sensitively tunes the electronic band-gap of the solid, as shown here by Heyd-Scuseria-Ernzerhof screened hybrid functional calculations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biaxially oriented films produced from semi-crystalline, semi-aromatic polyesters are utilised extensively as components within various applications, including the specialist packaging, flexible electronic and photovoltaic markets. However, the thermal performance of such polyesters, specifically poly(ethylene terephthalate) (PET) and poly(ethylene-2,6-naphthalate) (PEN), is inadequate for several applications that require greater dimensional stability at higher operating temperatures. The work described in this project is therefore primarily focussed upon the copolymerisation of rigid comonomers with PET and PEN, in order to produce novel polyester-based materials that exhibit superior thermomechanical performance, with retention of crystallinity, to achieve biaxial orientation. Rigid biphenyldiimide comonomers were readily incorporated into PEN and poly(butylene-2,6-naphthalate) (PBN) via a melt-polycondensation route. For each copoly(ester-imide) series, retention of semi-crystalline behaviour is observed throughout entire copolymer composition ratios. This phenomenon may be rationalised by cocrystallisation between isomorphic biphenyldiimide and naphthalenedicarboxylate residues, which enables statistically random copolymers to melt-crystallise despite high proportions of imide sub-units being present. In terms of thermal performance, the glass transition temperature, Tg, linearly increases with imide comonomer content for both series. This facilitated the production of several high performance PEN-based biaxially oriented films, which displayed analogous drawing, barrier and optical properties to PEN. Selected PBN copoly(ester-imide)s also possess the ability to either melt-crystallise, or form a mesophase from the isotropic state depending on the applied cooling rate. An equivalent synthetic approach based upon isomorphic comonomer crystallisation was subsequently applied to PET by copolymerisation with rigid diimide and Kevlar®-type amide comonomers, to afford several novel high performance PET-based copoly(ester-imide)s and copoly(ester-amide)s that all exhibited increased Tgs. Retention of crystallinity was achieved in these copolymers by either melt-crystallisation or thermal annealing. The initial production of a semi-crystalline, PET-based biaxially oriented film with a Tg in excess of 100 °C was successful, and this material has obvious scope for further industrial scale-up and process development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The studied sector of the central Ribeira Fold Belt (SE Brazil) comprises metatexites, diatexites, charnockites and blastomylonites. This study integrates petrological and thermochronological data in order to constrain the thermotectonic and geodynamic evolution of this Neoproterozoic-Ordovician mobile belt during Western Gondwana amalgamation. New data indicate that after an earlier collision stage at similar to 610 Ma (zircon, U-Pb age), peak metamorphism and lower crust partial melting, coeval with the main regional high grade D(1) thrust deformation, occurred at 572-562 Ma (zircon, U-Pb ages). The overall average cooling rate was low (<5 degrees C/Ma) from 750 to 250 degrees C (at similar to 455 Ma; biotite-WR Rb-Sr age), but disparate cooling paths indicate differential uplift between distinct lithotypes: (a) metatexites and blastomylonites show a overall stable 3-5 degrees C/Ma cooling rate; (b) charnockites and associated rocks remained at T>650 degrees C during sub-horizontal D(2) shearing until similar to 510-470 Ma (garnet-WR Sm-Nd ages) (1-2 degrees C/Ma), being then rapidly exhumed/cooled (8-30 degrees C/Ma) during post-orogenic D(3) deformation with late granite emplacement at similar to 490 Ma (zircon, U-Pb age). Cooling rates based on garnet-biotite Fe-Mg diffusion are broadly consistent with the geochronological cooling rates: (a) metatexites were cooled faster at high temperatures (6 degrees C/Ma) and slowly at low temperatures (0.1 degrees C/Ma), decreasing cooling rates with time; (b) charnockites show low cooling rates (2 degrees C/Ma) near metamorphic peak conditions and high cooling rates (120 degrees C/Ma) at lower temperatures, increasing cooling rates during retrogression. The charnockite thermal evolution and the extensive production of granitoid melts in the area imply that high geothermal gradients were sustained fora long period of time (50-90 Ma). This thermal anomaly most likely reflects upwelling of asthenospheric mantle and magma underplating coupled with long-term generation of high HPE (heat producing elements) granitoids. These factors must have sustained elevated crustal geotherms for similar to 100 Ma, promoting widespread charnockite generation at middle to lower crustal levels. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The study reported here is part of a large project for evaluation of the Thermo-Chemical Accumulator (TCA), a technology under development by the Swedish company ClimateWell AB. The studies concentrate on the use of the technology for comfort cooling. This report concentrates on measurements in the laboratory, modelling and system simulation. The TCA is a three-phase absorption heat pump that stores energy in the form of crystallised salt, in this case Lithium Chloride (LiCl) with water being the other substance. The process requires vacuum conditions as with standard absorption chillers using LiBr/water. Measurements were carried out in the laboratories at the Solar Energy Research Center SERC, at Högskolan Dalarna as well as at ClimateWell AB. The measurements at SERC were performed on a prototype version 7:1 and showed that this prototype had several problems resulting in poor and unreliable performance. The main results were that: there was significant corrosion leading to non-condensable gases that in turn caused very poor performance; unwanted crystallisation caused blockages as well as inconsistent behaviour; poor wetting of the heat exchangers resulted in relatively high temperature drops there. A measured thermal COP for cooling of 0.46 was found, which is significantly lower than the theoretical value. These findings resulted in a thorough redesign for the new prototype, called ClimateWell 10 (CW10), which was tested briefly by the authors at ClimateWell. The data collected here was not large, but enough to show that the machine worked consistently with no noticeable vacuum problems. It was also sufficient for identifying the main parameters in a simulation model developed for the TRNSYS simulation environment, but not enough to verify the model properly. This model was shown to be able to simulate the dynamic as well as static performance of the CW10, and was then used in a series of system simulations. A single system model was developed as the basis of the system simulations, consisting of a CW10 machine, 30 m2 flat plate solar collectors with backup boiler and an office with a design cooling load in Stockholm of 50 W/m2, resulting in a 7.5 kW design load for the 150 m2 floor area. Two base cases were defined based on this: one for Stockholm using a dry cooler with design cooling rate of 30 kW; one for Madrid with a cooling tower with design cooling rate of 34 kW. A number of parametric studies were performed based on these two base cases. These showed that the temperature lift is a limiting factor for cooling for higher ambient temperatures and for charging with fixed temperature source such as district heating. The simulated evacuated tube collector performs only marginally better than a good flat plate collector if considering the gross area, the margin being greater for larger solar fractions. For 30 m2 collector a solar faction of 49% and 67% were achieved for the Stockholm and Madrid base cases respectively. The average annual efficiency of the collector in Stockholm (12%) was much lower than that in Madrid (19%). The thermal COP was simulated to be approximately 0.70, but has not been possible to verify with measured data. The annual electrical COP was shown to be very dependent on the cooling load as a large proportion of electrical use is for components that are permanently on. For the cooling loads studied, the annual electrical COP ranged from 2.2 for a 2000 kWh cooling load to 18.0 for a 21000 kWh cooling load. There is however a potential to reduce the electricity consumption in the machine, which would improve these figures significantly. It was shown that a cooling tower is necessary for the Madrid climate, whereas a dry cooler is sufficient for Stockholm although a cooling tower does improve performance. The simulation study was very shallow and has shown a number of areas that are important to study in more depth. One such area is advanced control strategy, which is necessary to mitigate the weakness of the technology (low temperature lift for cooling) and to optimally use its strength (storage).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A C–Mn–V steel was used to study ultrafine ferrite formation (1–3 μm) through dynamic strain-induced transformation (DSIT) using hot torsion experiments. A systematic study determined the critical strain for the start of DSIT (C,DSIT), although this may not lead to a fully ultrafine microstructure. Therefore, the strain to produce an ultrafine ferrite (UFF) as final microstructure (C,UFF) during deformation was also determined. In addition, the effect of thermomechanical parameters such as deformation temperature, prior austenite grain size, strain rate and cooling rate on C,DSIT and C,UFF has been evaluated. DSIT ferrite nucleated on prior austenite grain boundaries at an early stage of straining followed by intragranular nucleation at higher strains. The prior austenite grain size affected the distribution of DSIT ferrite nucleation sites at an early stage of transformation and the subsequent coarsening behaviour of the grain boundary and intragranular ferrite grains during post-deformation cooling. Also, C,DSIT and C,UFF increased with an increase in the prior austenite grain size and deformation temperature. The post-deformation cooling had a strong effect not only on C,UFF but also the UFF microstructure (i.e. final ferrite grain size and second phase characteristics).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel polyvinylalcohol/silica (PVA/SiO2) nano-composite is prepared with the self-assembly monolayer (SAM) technique. The SiO2 nano-particles are homogenously distributed throughout the PVA matrixes as nano-clusters with an average diameter ranged from 15 to 240 nm depending on the SiO2 contents. Using differential scanning calorimetry (DSC), the non-isothermal crystallisation behaviour and kinetics of the PVA/SiO2 nano-composites are investigated and compared to those of the pure PVA. There are strong dependences of the degree of crystallinity (Xc), peak crystallisation temperature (Tp), half time of crystallisation (t1/2), and Ozawa exponent (m) on the SiO2 content and cooling rate. The crystallisation activation energy (E) calculated with the Kissinger model is markedly lower when a small amount of SiO2 is added, then gradually increases and finally becomes higher than that of the pure PVA when there is more than 10% SiO2 in the composite.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nonisothermal crystallization behaviors of PVA and poly (vinyl alcohol) and Silica (PVA/SiO2) nanocomposites prepared via a self-assembly monolayer (SAM) technique are investigated in this study. Differential scanning calorimetry (DSC) is used to measure the crystallization temperature and enthalpy of PVA and nanocomposites in nitrogen at various cooling rate. The results show that the degree of crystallinity of PVA and nanocomposites decreases when the SiO2 content increases but increases with an increasing cooling rate. The peak crystallization temperature decreases with an increasing cooling rate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The dynamic strain-induced transformation (DSIT) of austenite to ferrite was investigated under different undercooling conditions using three low carbon Si-Mn steels. The undercooling of austenite (ΔT) was controlled by varying the cooling rate between austenitization and deformation temperatures. Uniform DSIT ferrite grains (∼2.3 μm) were produced at a relatively high deformation temperature above 840°C using a low carbon high Si steel (0.077C-0.97Mn-1.35Si, mass%) in connection with a larger ΔT. The critical conditions for DSIT were determined based on the flow stress-strain curves measured during hot compression tests. Influence of deformation temperature on DSIT of low carbon Si-added steel was also discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Continuous cooling transformation behaviors of low carbon steels with two Si contents (0.50% and 1. 35%) were investigated under undeformed and deformed conditions. Effects of Si contents, deformation, and cooling rates on y transformation start temperature (A,r3), phase microstructures, and hardness were studied. The results show that, in the case of the deformation with the true strain of 0. 4, the length of bainitic ferrite laths is significantly decreased in low Si steel, whereas, the M/A constituent becomes more uniform in high Si steel. An increase in cooling rates lowers the A,r3 greatly. The steel with higher level of Si exhibits higher A,r3, and higher hardness both under undeformed and deformed conditions compared with the steel with a lower Si content. Especially, the influence of Si on Ar3 is dependent on deformation. Such effects are more significant under the undeformed condition. The hardness of both steels increases with the increase of cooling rates, whereas, the deformation involved in both steels reduces the hardness.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Solidification microstructure is a defining link between production techniques and the mechanical properties of metals and in particular steel. Due to the difficulty of conducting solidification studies at high temperature, knowledge of the development of solidification microstructure in steel is scarce. In this study, a laser-scanning confocal microscopy (LSCM) has been used to observe in situ and in real-time the planar to cellular to dendritic transition of the progressing solid/liquid interface in low carbon steel. Because the in situ observations in the laser-scanning confocal microscopy are restricted to the surface, the effect of sample thickness on surface observations was determined. Moreover, the effect of cooling rate and alloy composition on the planar to cellular interface transition was investigated. In the low-alloyed, low-carbon steel studied, the cooling rate does not seem to have an effect on the spacing of the cellular microstructure. However, in the presence of copper and manganese, the cell spacing decreased at higher cooling rates. Higher concentrations of copper in steel resulted on an increased cell spacing at the same cooling rates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Microstructures and Charpy impact properties have been examined in two microalloyed steels following heat treatments to simulate weld heat affected zone (HAZ) structures over a range of heat input conditions, characterised by the cooling time from 800 to 500°C (Δt8/5). The base materials were low carbon structural steel plates microalloyed with vanadium and nitrogen (V-N) and niobium (Nb), respectively. The toughnesses of the HAZs displayed remarkably different behaviours as shown by their impact transition temperatures. For the V-N steel, the toughness improved with increasingly rapid cooling (low heat input conditions) whereas the Nb steel showed an opposite trend. Some of this behaviour could be explained by the presence of coarse ferrite grains in the slowly cooled V-N steel. However, other conditions where all the structures were bainitic and rather similar in optical micrographs gave widely different toughness values. The recently developed method of five dimensional boundary analysis based on electron backscattering diffraction has been applied to these cases for the first time. This showed that the lath boundaries in the bainite were predominantly on {1 1 0} planes of the ferrite and that the average spacing of these boundaries varied depending on steel composition and cooling rate. Since {1 1 0} is also the slip plane in ferrite, it is considered that close spacing between the lath boundaries inhibits general plasticity at stress concentrations and favours initiation of fracture. The differences between the two steels are believed to be due to their transformation behaviours on cooling where precipitation of vanadium nitride in austenite accelerates ferrite formation and raises the temperature of the phase transformation in V-N steels.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Quenching, in heat treatment, plays a vital role in controlling material properties. It is the most important step in manipulating the strength of steel. It involves cooling the material from the austenitizing temperature at different cooling rates using variations in quenchants to obtain corresponding material properties. The commonly used quenchants are water, oil, and brine. The cooling rate is the rate at which heat is ejected from the material by the quenchant. The effectiveness of the quenchant is judged by its ability to absorb heat from the material and thermally conduct. Because of stringent regulations regarding use and disposal, there is a need to develop new, environmentally friendly quenchants. The experimental design in this study consisted of quenching austenitized nano-structured bainitic steel in four different quenchants, namely, water, oil, brine, and 1 M sodium carbonate solution. This research gives the insight of substituting conventional quenchants with 1 M sodium carbonate solution. The final four samples were characterized using metallography. A comparative study of the hardness of nano-structured bainitic steel quenched in the newly developed quenchant (i.e., 1 M sodium carbonate solution) and of steel quenched with the conventional one is done. All the results are tabulated, and the applicability of the quenchants is discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This masther dissertation presents a contribution to the study of 316L stainless steel sintering aiming to study their behavior in the milling process and the effect of isotherm temperature on the microstructure and mechanical properties. The 316L stainless steel is a widely used alloy for their high corrosion resistance property. However its application is limited by the low wear resistance consequence of its low hardness. In previous work we analyzed the effect of sintering additives as NbC and TaC. This study aims at deepening the understanding of sintering, analyzing the effect of grinding on particle size and microstructure and the effect of heating rate and soaking time on the sintered microstructure and on their microhardness. Were milled 316L powders with NbC at 1, 5 and 24 hours respectively. Particulates were characterized by SEM and . Cylindrical samples height and diameter of 5.0 mm were compacted at 700 MPa. The sintering conditions were: heating rate 5, 10 and 15◦C/min, temperature 1000, 1100, 1200, 1290 and 1300◦C, and soaking times of 30 and 60min. The cooling rate was maintained at 25◦C/min. All samples were sintered in a vacuum furnace. The sintered microstructure were characterized by optical and electron microscopy as well as density and microhardness. It was observed that the milling process has an influence on sintering, as well as temperature. The major effect was caused by firing temperature, followed by the grinding and heating rate. In this case, the highest rates correspond to higher sintering.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This research studies the sintering of ferritic steel chips from the machining process. Were sintered metal powder obtained from machining process chips for face milling of a ferritic steel. The chip was produced by machining and characterized by SEM and EDS, and underwent a process of high energy mill powder characterized also by SEM and EDS. Were constructed three types of matrixes for uniaxial compression (relation l / d greater than 2.5). The differences in the design of the matrixes were essentially in the direction of load application, which for cylindrical case axial direction, while for the rectangular arrays, the longer side. Two samples were compressed with different geometries, a cylindrical and rectangular with the same compaction pressure of 700 MPa. The samples were sintered in a vacuum resistive furnace, heating rate 20 °C / min., isotherm 1300 °C for 60 minutes, and cooling rate of 25 °C / min to room temperature. The starting material of the rectangular sample was further annealed up to temperature of 800 ° C for 30 min. Sintered samples were characterized by scanning electron microscopy, optical microscopy and EDS. The sample compressed in the cylindrical matrix did not show a regular density reflecting in the sintered microstructure revealed by the irregular geometry of the pores, characterizing that the sintering was not complete, reaching only the second phase. As for the specimen compacted in the rectangular array, the analysis performed by scanning electron microscopy, optical microscopy and EDS indicate a good densification, and homogeneous microstructure in their full extent. Additionally, the EDS analyzes indicate no significant changes in chemical composition in the process steps. Therefore, it is concluded that recycling of chips, from the processed ferritic steel is feasible by the powder metallurgy. It makes possible rationalize raw material and energy by manufacture of known properties components from chips generated by the machining process, being benefits to the environment

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polymer particles in the nanometer range are of fundamental interest today, especially when used as carrier systems in the controlled release of drugs, cosmetics and nutraceuticals, as well as in coating materials with magnetic properties. The main objective of the present study concerns the production of submicron particles of poly (methyl methacrylate) (PMMA) by crystallization of a polymer solution by thermally controlled cooling. In this work, PMMA solutions in ethanol and 1-propanol were prepared at different concentrations (1% to 5% by weight) and crystallized at different cooling rates (0.2 to 0.8 ° C / min) controlled linearly. Analysis of particle size distribution (DLS / CILAS) and scanning electron microscopy (SEM) were performed in order to evaluate the morphological characteristics of the produced particles. The results demonstrated that it is possible to obtain submicron polymer perfectly spherical particles using the technique discussed in this study. It was also observed that, depending on the cooling rate and the concentration of the polymer solution, it is possible to achieve high yield in the formation of submicron particles. In addition, preliminary tests were performed in order to verify the ability of this technique to form particulated carrier material with magnetic properties. The results showed that the developed technique can be an interesting alternative to obtain polymer particles with magnetic properties