984 resultados para Convergence model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A branch and bound algorithm is proposed to solve the [image omitted]-norm model reduction problem for continuous and discrete-time linear systems, with convergence to the global optimum in a finite time. The lower and upper bounds in the optimization procedure are described by linear matrix inequalities (LMI). Also proposed are two methods with which to reduce the convergence time of the branch and bound algorithm: the first one uses the Hankel singular values as a sufficient condition to stop the algorithm, providing to the method a fast convergence to the global optimum. The second one assumes that the reduced model is in the controllable or observable canonical form. The [image omitted]-norm of the error between the original model and the reduced model is considered. Examples illustrate the application of the proposed method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of reconfiguration of distribution systems considering the presence of distributed generation is modeled as a mixed-integer linear programming (MILP) problem in this paper. The demands of the electric distribution system are modeled through linear approximations in terms of real and imaginary parts of the voltage, taking into account typical operating conditions of the electric distribution system. The use of an MILP formulation has the following benefits: (a) a robust mathematical model that is equivalent to the mixed-integer non-linear programming model; (b) an efficient computational behavior with exiting MILP solvers; and (c) guarantees convergence to optimality using classical optimization techniques. Results from one test system and two real systems show the excellent performance of the proposed methodology compared with conventional methods. © 2012 Published by Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a mixed-integer linear programming model to solve the problem of allocating voltage regulators and fixed or switched capacitors (VRCs) in radial distribution systems. The use of a mixed-integer linear model guarantees convergence to optimality using existing optimization software. In the proposed model, the steady-state operation of the radial distribution system is modeled through linear expressions. The results of one test system and one real distribution system are presented in order to show the accuracy as well as the efficiency of the proposed solution technique. An heuristic to obtain the Pareto front for the multiobjective VRCs allocation problem is also presented. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The FENE-CR model is investigated through a numerical algorithm to simulate the time-dependent moving free surface flow produced by a jet impinging on a flat surface. The objective is to demonstrate that by increasing the extensibility parameter L, the numerical solutions converge to the solutions obtained with the Oldroyd-B model. The governing equations are solved by an established free surface flow solver based on the finite difference and marker-and-cell methods. Numerical predictions of the extensional viscosity obtained with several values of the parameter L are presented. The results show that if the extensibility parameter L is sufficiently large then the extensional viscosities obtained with the FENE-CR model approximate the corresponding Oldroyd-B viscosity. Moreover, the flow from a jet impinging on a flat surface is simulated with various values of the extensibility parameter L and the fluid flow visualizations display convergence to the Oldroyd-B jet flow results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present both analytical and numerical results on the position of partition function zeros on the complex magnetic field plane of the q=2 state (Ising) and the q=3 state Potts model defined on phi(3) Feynman diagrams (thin random graphs). Our analytic results are based on the ideas of destructive interference of coexisting phases and low temperature expansions. For the case of the Ising model, an argument based on a symmetry of the saddle point equations leads us to a nonperturbative proof that the Yang-Lee zeros are located on the unit circle, although no circle theorem is known in this case of random graphs. For the q=3 state Potts model, our perturbative results indicate that the Yang-Lee zeros lie outside the unit circle. Both analytic results are confirmed by finite lattice numerical calculations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Some organisms that live just below the sea surface (the neuston) are known more as a matter of curiosity than as critical players in biogeochemical cycles. The hypothesis of this work is that their existence implies that they receive some food from an upward flux of organic matter. The behaviour of these organisms and of the associated organic matter, hereafter mentioned as floating biogenic material (FBM) is explored using a global physical-biogeochemical coupled model, in which its generation is fixed to 1% of primary production, and decay rate is of the order of I month. The model shows that the distribution of FBM should depart rapidly from that of primary production.. and be more sensitive to circulation patterns than to the distribution of primary production. It is trapped in convergence areas, where it reaches concentrations larger by a factor 10 than in divergences, thus enhancing and inverting the contrast between high and low primary productivity areas. Attention is called on the need to better understand the biogeochemical processes in the first meter of the ocean, as they may impact the distribution of food for fishes, as well as the conditions for air-sea exchange and for the interpretation of sea color.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Item response theory (IRT) comprises a set of statistical models which are useful in many fields, especially when there is an interest in studying latent variables (or latent traits). Usually such latent traits are assumed to be random variables and a convenient distribution is assigned to them. A very common choice for such a distribution has been the standard normal. Recently, Azevedo et al. [Bayesian inference for a skew-normal IRT model under the centred parameterization, Comput. Stat. Data Anal. 55 (2011), pp. 353-365] proposed a skew-normal distribution under the centred parameterization (SNCP) as had been studied in [R. B. Arellano-Valle and A. Azzalini, The centred parametrization for the multivariate skew-normal distribution, J. Multivariate Anal. 99(7) (2008), pp. 1362-1382], to model the latent trait distribution. This approach allows one to represent any asymmetric behaviour concerning the latent trait distribution. Also, they developed a Metropolis-Hastings within the Gibbs sampling (MHWGS) algorithm based on the density of the SNCP. They showed that the algorithm recovers all parameters properly. Their results indicated that, in the presence of asymmetry, the proposed model and the estimation algorithm perform better than the usual model and estimation methods. Our main goal in this paper is to propose another type of MHWGS algorithm based on a stochastic representation (hierarchical structure) of the SNCP studied in [N. Henze, A probabilistic representation of the skew-normal distribution, Scand. J. Statist. 13 (1986), pp. 271-275]. Our algorithm has only one Metropolis-Hastings step, in opposition to the algorithm developed by Azevedo et al., which has two such steps. This not only makes the implementation easier but also reduces the number of proposal densities to be used, which can be a problem in the implementation of MHWGS algorithms, as can be seen in [R.J. Patz and B.W. Junker, A straightforward approach to Markov Chain Monte Carlo methods for item response models, J. Educ. Behav. Stat. 24(2) (1999), pp. 146-178; R. J. Patz and B. W. Junker, The applications and extensions of MCMC in IRT: Multiple item types, missing data, and rated responses, J. Educ. Behav. Stat. 24(4) (1999), pp. 342-366; A. Gelman, G.O. Roberts, and W.R. Gilks, Efficient Metropolis jumping rules, Bayesian Stat. 5 (1996), pp. 599-607]. Moreover, we consider a modified beta prior (which generalizes the one considered in [3]) and a Jeffreys prior for the asymmetry parameter. Furthermore, we study the sensitivity of such priors as well as the use of different kernel densities for this parameter. Finally, we assess the impact of the number of examinees, number of items and the asymmetry level on the parameter recovery. Results of the simulation study indicated that our approach performed equally as well as that in [3], in terms of parameter recovery, mainly using the Jeffreys prior. Also, they indicated that the asymmetry level has the highest impact on parameter recovery, even though it is relatively small. A real data analysis is considered jointly with the development of model fitting assessment tools. The results are compared with the ones obtained by Azevedo et al. The results indicate that using the hierarchical approach allows us to implement MCMC algorithms more easily, it facilitates diagnosis of the convergence and also it can be very useful to fit more complex skew IRT models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] In this paper we present a new model for optical flow calculation using a variational formulation which preserves discontinuities of the flow much better than classical methods. We study the Euler-Lagrange equations asociated to the variational problem. In the case of quadratic energy, we show the existence and uniqueness of the corresponding evolution problem. Since our method avoid linearization in the optical flow constraint, it can recover large displacement in the scene. We avoid convergence to irrelevant local minima by embedding our method into a linear scale-space framework and using a focusing strategy from coarse to fine scales.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The need for a convergence between semi-structured data management and Information Retrieval techniques is manifest to the scientific community. In order to fulfil this growing request, W3C has recently proposed XQuery Full Text, an IR-oriented extension of XQuery. However, the issue of query optimization requires the study of important properties like query equivalence and containment; to this aim, a formal representation of document and queries is needed. The goal of this thesis is to establish such formal background. We define a data model for XML documents and propose an algebra able to represent most of XQuery Full-Text expressions. We show how an XQuery Full-Text expression can be translated into an algebraic expression and how an algebraic expression can be optimized.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider stochastic individual-based models for social behaviour of groups of animals. In these models the trajectory of each animal is given by a stochastic differential equation with interaction. The social interaction is contained in the drift term of the SDE. We consider a global aggregation force and a short-range repulsion force. The repulsion range and strength gets rescaled with the number of animals N. We show that for N tending to infinity stochastic fluctuations disappear and a smoothed version of the empirical process converges uniformly towards the solution of a nonlinear, nonlocal partial differential equation of advection-reaction-diffusion type. The rescaling of the repulsion in the individual-based model implies that the corresponding term in the limit equation is local while the aggregation term is non-local. Moreover, we discuss the effect of a predator on the system and derive an analogous convergence result. The predator acts as an repulsive force. Different laws of motion for the predator are considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aims at a comprehensive understanding of the effects of aerosol-cloud interactions and their effects on cloud properties and climate using the chemistry-climate model EMAC. In this study, CCN activation is regarded as the dominant driver in aerosol-cloud feedback loops in warm clouds. The CCN activation is calculated prognostically using two different cloud droplet nucleation parameterizations, the STN and HYB CDN schemes. Both CDN schemes account for size and chemistry effects on the droplet formation based on the same aerosol properties. The calculation of the solute effect (hygroscopicity) is the main difference between the CDN schemes. The kappa-method is for the first time incorporated into Abdul-Razzak and Ghan activation scheme (ARG) to calculate hygroscopicity and critical supersaturation of aerosols (HYB), and the performance of the modied scheme is compared with the osmotic coefficient model (STN), which is the standard in the ARG scheme. Reference simulations (REF) with the prescribed cloud droplet number concentration have also been carried out in order to understand the effects of aerosol-cloud feedbacks. In addition, since the calculated cloud coverage is an important determinant of cloud radiative effects and is influencing the nucleation process two cloud cover parameterizations (i.e., a relative humidity threshold; RH-CLC and a statistical cloud cover scheme; ST-CLC) have been examined together with the CDN schemes, and their effects on the simulated cloud properties and relevant climate parameters have been investigated. The distinct cloud droplet spectra show strong sensitivity to aerosol composition effects on cloud droplet formation in all particle sizes, especially for the Aitken mode. As Aitken particles are the major component of the total aerosol number concentration and CCN, and are most sensitive to aerosol chemical composition effect (solute effect) on droplet formation, the activation of Aitken particles strongly contribute to total cloud droplet formation and thereby providing different cloud droplet spectra. These different spectra influence cloud structure, cloud properties, and climate, and show regionally varying sensitivity to meteorological and geographical condition as well as the spatiotemporal aerosol properties (i.e., particle size, number, and composition). The changes responding to different CDN schemes are more pronounced at lower altitudes than higher altitudes. Among regions, the subarctic regions show the strongest changes, as the lower surface temperature amplifies the effects of the activated aerosols; in contrast, the Sahara desert, where is an extremely dry area, is less influenced by changes in CCN number concentration. The aerosol-cloud coupling effects have been examined by comparing the prognostic CDN simulations (STN, HYB) with the reference simulation (REF). Most pronounced effects are found in the cloud droplet number concentration, cloud water distribution, and cloud radiative effect. The aerosol-cloud coupling generally increases cloud droplet number concentration; this decreases the efficiency of the formation of weak stratiform precipitation, and increases the cloud water loading. These large-scale changes lead to larger cloud cover and longer cloud lifetime, and contribute to high optical thickness and strong cloud cooling effects. This cools the Earth's surface, increases atmospheric stability, and reduces convective activity. These changes corresponding to aerosol-cloud feedbacks are also differently simulated depending on the cloud cover scheme. The ST-CLC scheme is more sensitive to aerosol-cloud coupling, since this scheme uses a tighter linkage of local dynamics and cloud water distributions in cloud formation process than the RH-CLC scheme. For the calculated total cloud cover, the RH-CLC scheme simulates relatively similar pattern to observations than the ST-CLC scheme does, but the overall properties (e.g., total cloud cover, cloud water content) in the RH simulations are overestimated, particularly over ocean. This is mainly originated from the difference in simulated skewness in each scheme: the RH simulations calculate negatively skewed distributions of cloud cover and relevant cloud water, which is similar to that of the observations, while the ST simulations yield positively skewed distributions resulting in lower mean values than the RH-CLC scheme does. The underestimation of total cloud cover over ocean, particularly over the intertropical convergence zone (ITCZ) relates to systematic defficiency of the prognostic calculation of skewness in the current set-ups of the ST-CLC scheme.rnOverall, the current EMAC model set-ups perform better over continents for all combinations of the cloud droplet nucleation and cloud cover schemes. To consider aerosol-cloud feedbacks, the HYB scheme is a better method for predicting cloud and climate parameters for both cloud cover schemes than the STN scheme. The RH-CLC scheme offers a better simulation of total cloud cover and the relevant parameters with the HYB scheme and single-moment microphysics (REF) than the ST-CLC does, but is not very sensitive to aerosol-cloud interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We used a colour-space model of avian vision to assess whether a distinctive bird pollination syndrome exists for floral colour among Australian angiosperms. We also used a novel phylogenetically based method to assess whether such a syndrome represents a significant degree of convergent evolution. About half of the 80 species in our sample that attract nectarivorous birds had floral colours in a small, isolated region of colour space characterized by an emphasis on long-wavelength reflection. The distinctiveness of this 'red arm' region was much greater when colours were modelled for violet-sensitive (VS) avian vision than for the ultraviolet-sensitive visual system. Honeyeaters (Meliphagidae) are the dominant avian nectarivores in Australia and have VS vision. Ancestral state reconstructions suggest that 31 lineages evolved into the red arm region, whereas simulations indicate that an average of five or six lineages and a maximum of 22 are likely to have entered in the absence of selection. Thus, significant evolutionary convergence on a distinctive floral colour syndrome for bird pollination has occurred in Australia, although only a subset of bird-pollinated taxa belongs to this syndrome. The visual system of honeyeaters has been the apparent driver of this convergence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We derive a new class of iterative schemes for accelerating the convergence of the EM algorithm, by exploiting the connection between fixed point iterations and extrapolation methods. First, we present a general formulation of one-step iterative schemes, which are obtained by cycling with the extrapolation methods. We, then square the one-step schemes to obtain the new class of methods, which we call SQUAREM. Squaring a one-step iterative scheme is simply applying it twice within each cycle of the extrapolation method. Here we focus on the first order or rank-one extrapolation methods for two reasons, (1) simplicity, and (2) computational efficiency. In particular, we study two first order extrapolation methods, the reduced rank extrapolation (RRE1) and minimal polynomial extrapolation (MPE1). The convergence of the new schemes, both one-step and squared, is non-monotonic with respect to the residual norm. The first order one-step and SQUAREM schemes are linearly convergent, like the EM algorithm but they have a faster rate of convergence. We demonstrate, through five different examples, the effectiveness of the first order SQUAREM schemes, SqRRE1 and SqMPE1, in accelerating the EM algorithm. The SQUAREM schemes are also shown to be vastly superior to their one-step counterparts, RRE1 and MPE1, in terms of computational efficiency. The proposed extrapolation schemes can fail due to the numerical problems of stagnation and near breakdown. We have developed a new hybrid iterative scheme that combines the RRE1 and MPE1 schemes in such a manner that it overcomes both stagnation and near breakdown. The squared first order hybrid scheme, SqHyb1, emerges as the iterative scheme of choice based on our numerical experiments. It combines the fast convergence of the SqMPE1, while avoiding near breakdowns, with the stability of SqRRE1, while avoiding stagnations. The SQUAREM methods can be incorporated very easily into an existing EM algorithm. They only require the basic EM step for their implementation and do not require any other auxiliary quantities such as the complete data log likelihood, and its gradient or hessian. They are an attractive option in problems with a very large number of parameters, and in problems where the statistical model is complex, the EM algorithm is slow and each EM step is computationally demanding.