893 resultados para Control and Systems Engineering


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this letter, a standard postnonlinear blind source separation algorithm is proposed, based on the MISEP method, which is widely used in linear and nonlinear independent component analysis. To best suit a wide class of postnonlinear mixtures, we adapt the MISEP method to incorporate a priori information of the mixtures. In particular, a group of three-layered perceptrons and a linear network are used as the unmixing system to separate sources in the postnonlinear mixtures, and another group of three-layered perceptron is used as the auxiliary network. The learning algorithm for the unmixing system is then obtained by maximizing the output entropy of the auxiliary network. The proposed method is applied to postnonlinear blind source separation of both simulation signals and real speech signals, and the experimental results demonstrate its effectiveness and efficiency in comparison with existing methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A continuous forward algorithm (CFA) is proposed for nonlinear modelling and identification using radial basis function (RBF) neural networks. The problem considered here is simultaneous network construction and parameter optimization, well-known to be a mixed integer hard one. The proposed algorithm performs these two tasks within an integrated analytic framework, and offers two important advantages. First, the model performance can be significantly improved through continuous parameter optimization. Secondly, the neural representation can be built without generating and storing all candidate regressors, leading to significantly reduced memory usage and computational complexity. Computational complexity analysis and simulation results confirm the effectiveness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper analyses multivariate statistical techniques for identifying and isolating abnormal process behaviour. These techniques include contribution charts and variable reconstructions that relate to the application of principal component analysis (PCA). The analysis reveals firstly that contribution charts produce variable contributions which are linearly dependent and may lead to an incorrect diagnosis, if the number of principal components retained is close to the number of recorded process variables. The analysis secondly yields that variable reconstruction affects the geometry of the PCA decomposition. The paper further introduces an improved variable reconstruction method for identifying multiple sensor and process faults and for isolating their influence upon the recorded process variables. It is shown that this can accommodate the effect of reconstruction, i.e. changes in the covariance matrix of the sensor readings and correctly re-defining the PCA-based monitoring statistics and their confidence limits. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Local Controller Networks (LCNs) provide nonlinear control by interpolating between a set of locally valid, subcontrollers covering the operating range of the plant. Constructing such networks typically requires knowledge of valid local models. This paper describes a new genetic learning approach to the construction of LCNs directly from the dynamic equations of the plant, or from modelling data. The advantage is that a priori knowledge about valid local models is not needed. In addition to allowing simultaneous optimisation of both the controller and validation function parameters, the approach aids transparency by ensuring that each local controller acts independently of the rest at its operating point. It thus is valuable for simultaneous design of the LCNs and identification of the operating regimes of an unknown plant. Application results from a highly nonlinear pH neutralisation process and its associated neural network representation are utilised to illustrate these issues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The divide-and-conquer approach of local model (LM) networks is a common engineering approach to the identification of a complex nonlinear dynamical system. The global representation is obtained from the weighted sum of locally valid, simpler sub-models defined over small regions of the operating space. Constructing such networks requires the determination of appropriate partitioning and the parameters of the LMs. This paper focuses on the structural aspect of LM networks. It compares the computational requirements and performances of the Johansen and Foss (J&F) and LOLIMOT tree-construction algorithms. Several useful and important modifications to each algorithm are proposed. The modelling performances are evaluated using real data from a pilot plant of a pH neutralization process. Results show that while J&F achieves a more accurate nonlinear representation of the pH process, LOLIMOT requires significantly less computational effort.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with Takagi-Sugeno (TS) fuzzy model identification of nonlinear systems using fuzzy clustering. In particular, an extended fuzzy Gustafson-Kessel (EGK) clustering algorithm, using robust competitive agglomeration (RCA), is developed for automatically constructing a TS fuzzy model from system input-output data. The EGK algorithm can automatically determine the 'optimal' number of clusters from the training data set. It is shown that the EGK approach is relatively insensitive to initialization and is less susceptible to local minima, a benefit derived from its agglomerate property. This issue is often overlooked in the current literature on nonlinear identification using conventional fuzzy clustering. Furthermore, the robust statistical concepts underlying the EGK algorithm help to alleviate the difficulty of cluster identification in the construction of a TS fuzzy model from noisy training data. A new hybrid identification strategy is then formulated, which combines the EGK algorithm with a locally weighted, least-squares method for the estimation of local sub-model parameters. The efficacy of this new approach is demonstrated through function approximation examples and also by application to the identification of an automatic voltage regulation (AVR) loop for a simulated 3 kVA laboratory micro-machine system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A conventional local model (LM) network consists of a set of affine local models blended together using appropriate weighting functions. Such networks have poor interpretability since the dynamics of the blended network are only weakly related to the underlying local models. In contrast, velocity-based LM networks employ strictly linear local models to provide a transparent framework for nonlinear modelling in which the global dynamics are a simple linear combination of the local model dynamics. A novel approach for constructing continuous-time velocity-based networks from plant data is presented. Key issues including continuous-time parameter estimation, correct realisation of the velocity-based local models and avoidance of the input derivative are all addressed. Application results are reported for the highly nonlinear simulated continuous stirred tank reactor process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: The purpose of this paper is to examine the extent and nature of greening the supply chain (SC) in the UK manufacturing sector; and the factors that influence the breadth and depth of this activity.

Design/methodology/approach: Based on the findings from a sample of manufacturing organisations drawn from the membership of The Chartered Institute for Purchasing and Supply. Data are collected using a questionnaire, piloted and pre-tested before distribution with responses from 60 manufacturing companies.

Findings: On average manufacturers perceive the greatest pressure to improve environmental performance through legislation and internal drivers (IDs). The least influential pressures are related to societal drivers and SC pressures from individual customers. Green supply chain management (GSCM) practices amongst this “average” group of UK manufacturing organisations are focusing on internal, higher risk, descriptive activities, rather than proactive, external engagement processes. Environmental attitude (EA) is a key predictor of GSCM activity and those organisations that have a progressive attitude are also operationally very active. EA shows some relationship to legislative drivers but other factors are also influential. Operational activity may also be moderated by organisational contingencies such as risk, size, and nationality.

Research limitations/implications: The main limitation to this paper is the relatively small manufacturing sample.

Practical implications: This paper presents a series of constructs that identify GSCM operational activities companies to benchmark themselves against. It suggests which factors are driving these operational changes and how industry contingencies may be influential.

Originality/value: This paper explores what is driving environmental behaviour amongst an “average” sample of manufacturers, what specific management practices take place and the relationships between them.

Keywords: Manufacturing industries, Environmental management, Supply chain management, Sustainable development, United Kingdom
Paper type: Research paper

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses the design of gain- scheduled sampled-data controllers for continuous-time polytopic linear parameter-varying systems. The scheduling variables are assumed to available only at the sampling instants, and a bound on the time-variation of the scheduling parameters is also assumed to be known. The resultant gain-scheduled controllers improve the maximum achieveable delay bound over previous constant-gain ones in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A graphical method is presented for determining the capability of individual system nodes to accommodate wind power generation. The method is based upon constructing a capability chart for each node at which a wind farm is to be connected. The capability chart defines the domain of allowable power injections at the candidate node, subject to constraints imposed by voltage limits, voltage stability and equipment capability limits being satisfied. The chart is first derived for a two-bus model, before being extended to a multi-node power system. The graphical method is employed to derive the chart for a two-node system, as well as its application to a multi-node power system, considering the IEEE 30-bus test system as a case study. Although the proposed method is derived with the intention of determining the wind farm capacity to be connected at a specific node, it can be used for the analysis of a PQ bus loading as well as generation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Virtual reality has a number of advantages for analyzing sports interactions such as the standardization of experimental conditions, stereoscopic vision, and complete control of animated humanoid movement. Nevertheless, in order to be useful for sports applications, accurate perception of simulated movement in the virtual sports environment is essential. This perception depends on parameters of the synthetic character such as the number of degrees of freedom of its skeleton or the levels of detail (LOD) of its graphical representation. This study focuses on the influence of this latter parameter on the perception of the movement. In order to evaluate it, this study analyzes the judgments of immersed handball goalkeepers that play against a graphically modified virtual thrower. Five graphical representations of the throwing action were defined: a textured reference level (L0), a nontextured level (L1), a wire-frame level (L2), a moving point light display (MLD) level with a normal-sized ball (L3), and a MLD level where the ball is represented by a point of light (L4). The results show that judgments made by goalkeepers in the L4 condition are significantly less accurate than in all the other conditions (p

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose – The Six Sigma approach to business improvement has emerged as a phenomenon in both the practitioner and academic literature with potential for achieving increased competitiveness and contributing. However, there is a lack of critical reviews covering both theory and practice. Therefore, the purpose of this paper is to critically review the literature of Six Sigma using a consistent theoretical perspective, namely absorptive capacity.

Design/methodology/approach – The literature from peer-reviewed journals has been critically reviewed using the absorptive capacity framework and dimensions of acquisition, assimilation, transformation, and exploitation.

Findings – There is evidence of emerging theoretical underpinning in relation to Six Sigma borrowing from an eclectic range of organisational theories. However, this theoretical development lags behind practice in the area. The development of Six Sigma in practice is expanding mainly through more rigorous studies and applications in service-based environments (profit and not for profit). The absorptive capacity framework is found to be a useful overarching framework within which to situate existing theoretical and practice studies.

Research limitations/implications – Agendas for further research from the critical review, in relation to both theory and practice, have been established in relation to each dimension of the absorptive capacity framework.

Practical implications – The paper shows that Six Sigma is both a strategic and operational issue and that focussing solely on define, measure, analyse, improve control-based projects can limit the strategic effectiveness of the approach within organisations.

Originality/value – Despite the increasing volume of Six Sigma literature and organisational applications, there is a paucity of critical reviews which cover both theory and practice and which suggest research agendas derived from such reviews.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For some time there is a large interest in variable step-size methods for adaptive filtering. Recently, a few stochastic gradient algorithms have been proposed, which are based on cost functions that have exponential dependence on the chosen error. However, we have experienced that the cost function based on exponential of the squared error does not always satisfactorily converge. In this paper we modify this cost function in order to improve the convergence of exponentiated cost function and the novel ECVSS (exponentiated convex variable step-size) stochastic gradient algorithm is obtained. The proposed technique has attractive properties in both stationary and abrupt-change situations. (C) 2010 Elsevier B.V. All rights reserved.