793 resultados para Content-Based Retrieval


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Huge image collections are becoming available lately. In this scenario, the use of Content-Based Image Retrieval (CBIR) systems has emerged as a promising approach to support image searches. The objective of CBIR systems is to retrieve the most similar images in a collection, given a query image, by taking into account image visual properties such as texture, color, and shape. In these systems, the effectiveness of the retrieval process depends heavily on the accuracy of ranking approaches. Recently, re-ranking approaches have been proposed to improve the effectiveness of CBIR systems by taking into account the relationships among images. The re-ranking approaches consider the relationships among all images in a given dataset. These approaches typically demands a huge amount of computational power, which hampers its use in practical situations. On the other hand, these methods can be massively parallelized. In this paper, we propose to speedup the computation of the RL-Sim algorithm, a recently proposed image re-ranking approach, by using the computational power of Graphics Processing Units (GPU). GPUs are emerging as relatively inexpensive parallel processors that are becoming available on a wide range of computer systems. We address the image re-ranking performance challenges by proposing a parallel solution designed to fit the computational model of GPUs. We conducted an experimental evaluation considering different implementations and devices. Experimental results demonstrate that significant performance gains can be obtained. Our approach achieves speedups of 7x from serial implementation considering the overall algorithm and up to 36x on its core steps.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The multiple-instance learning (MIL) model has been successful in areas such as drug discovery and content-based image-retrieval. Recently, this model was generalized and a corresponding kernel was introduced to learn generalized MIL concepts with a support vector machine. While this kernel enjoyed empirical success, it has limitations in its representation. We extend this kernel by enriching its representation and empirically evaluate our new kernel on data from content-based image retrieval, biological sequence analysis, and drug discovery. We found that our new kernel generalized noticeably better than the old one in content-based image retrieval and biological sequence analysis and was slightly better or even with the old kernel in the other applications, showing that an SVM using this kernel does not overfit despite its richer representation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Content-based image retrieval is still a challenging issue due to the inherent complexity of images and choice of the most discriminant descriptors. Recent developments in the field have introduced multidimensional projections to burst accuracy in the retrieval process, but many issues such as introduction of pattern recognition tasks and deeper user intervention to assist the process of choosing the most discriminant features still remain unaddressed. In this paper, we present a novel framework to CBIR that combines pattern recognition tasks, class-specific metrics, and multidimensional projection to devise an effective and interactive image retrieval system. User interaction plays an essential role in the computation of the final multidimensional projection from which image retrieval will be attained. Results have shown that the proposed approach outperforms existing methods, turning out to be a very attractive alternative for managing image data sets.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, we present a novel approach to perform similarity queries over medical images, maintaining the semantics of a given query posted by the user. Content-based image retrieval systems relying on relevance feedback techniques usually request the users to label relevant/irrelevant images. Thus, we present a highly effective strategy to survey user profiles, taking advantage of such labeling to implicitly gather the user perceptual similarity. The profiles maintain the settings desired for each user, allowing tuning of the similarity assessment, which encompasses the dynamic change of the distance function employed through an interactive process. Experiments on medical images show that the method is effective and can improve the decision making process during analysis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Questo studio si propone di realizzare un’applicazione per dispositivi Android che permetta, per mezzo di un gioco di ruolo strutturato come caccia al tesoro, di visitare in prima persona città d’arte e luoghi turistici. Gli utenti finali, grazie alle funzionalità dell’app stessa, potranno giocare, creare e condividere cacce al tesoro basate sulla ricerca di edifici, monumenti, luoghi di rilevanza artistico-storica o turistica; in particolare al fine di completare ciascuna tappa di una caccia al tesoro il giocatore dovrà scattare una fotografia al monumento o edificio descritto nell’obiettivo della caccia stessa. Il software grazie ai dati rilevati tramite GPS e giroscopio (qualora il dispositivo ne sia dotato) e per mezzo di un algoritmo di instance recognition sarà in grado di affermare se la foto scattata rappresenta la risposta corretta al quesito della tappa. L’applicazione GeoPhotoHunt rappresenta non solo uno strumento ludico per la visita di città turistiche o più in generale luoghi di interesse, lo studio propone, infatti come suo contributo originale, l’implementazione su piattaforma mobile di un Content Based Image Retrieval System (CBIR) del tutto indipendente da un supporto server. Nello specifico il server dell’applicazione non sarà altro che uno strumento di appoggio con il quale i membri della “community” di GeoPhotoHunt potranno pubblicare le cacce al tesoro da loro create e condividere i punteggi che hanno totalizzato partecipando a una caccia al tesoro. In questo modo quando un utente ha scaricato sul proprio smartphone i dati di una caccia al tesoro potrà iniziare l’avventura anche in assenza di una connessione internet. L’intero studio è stato suddiviso in più fasi, ognuna di queste corrisponde ad una specifica sezione dell’elaborato che segue. In primo luogo si sono effettuate delle ricerche, soprattutto nel web, con lo scopo di individuare altre applicazioni che implementano l’idea della caccia al tesoro su piattaforma mobile o applicazioni che implementassero algoritmi di instance recognition direttamente su smartphone. In secondo luogo si è ricercato in letteratura quali fossero gli algoritmi di riconoscimento di immagini più largamente diffusi e studiati in modo da avere una panoramica dei metodi da testare per poi fare la scelta dell’algoritmo più adatto al caso di studio. Quindi si è proceduto con lo sviluppo dell’applicazione GeoPhotoHunt stessa, sia per quanto riguarda l’app front-end per dispositivi Android sia la parte back-end server. Infine si è passati ad una fase di test di algoritmi di riconoscimento di immagini in modo di avere una sufficiente quantità di dati sperimentali da permettere di effettuare una scelta dell’algoritmo più adatto al caso di studio. Al termine della fase di testing si è deciso di implementare su Android un algoritmo basato sulla distanza tra istogrammi di colore costruiti sulla scala cromatica HSV, questo metodo pur non essendo robusto in presenza di variazioni di luminosità e contrasto, rappresenta un buon compromesso tra prestazioni, complessità computazionale in modo da rendere la user experience quanto più coinvolgente.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this pilot study water was extracted from samples of two Holocene stalagmites from Socotra Island, Yemen, and one Eemian stalagmite from southern continental Yemen. The amount of water extracted per unit mass of stalagmite rock, termed "water yield" hereafter, serves as a measure of its total water content. Based on direct correlation plots of water yields and δ18Ocalcite and on regime shift analyses, we demonstrate that for the studied stalagmites the water yield records vary systematically with the corresponding oxygen isotopic compositions of the calcite (δ18Ocalcite). Within each stalagmite lower δ18Ocalcite values are accompanied by lower water yields and vice versa. The δ18Ocalcite records of the studied stalagmites have previously been interpreted to predominantly reflect the amount of rainfall in the area; thus, water yields can be linked to drip water supply. Higher, and therefore more continuous drip water supply caused by higher rainfall rates, supports homogeneous deposition of calcite with low porosity and therefore a small fraction of water-filled inclusions, resulting in low water yields of the respective samples. A reduction of drip water supply fosters irregular growth of calcite with higher porosity, leading to an increase of the fraction of water-filled inclusions and thus higher water yields. The results are consistent with the literature on stalagmite growth and supported by optical inspection of thin sections of our samples. We propose that for a stalagmite from a dry tropical or subtropical area, its water yield record represents a novel paleo-climate proxy recording changes in drip water supply, which can in turn be interpreted in terms of associated rainfall rates.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Randomised controlled trials (RCTs) of psychotherapeutic interventions assume that specific techniques are used in treatments, which are responsible for changes in the client's symptoms. This assumption also holds true for meta-analyses, where evidence for specific interventions and techniques is compiled. However, it has also been argued that different treatments share important techniques and that an upcoming consensus about useful treatment strategies is leading to a greater integration of treatments. This makes assumptions about the effectiveness of specific interventions ingredients questionable if the shared (common) techniques are more often used in interventions than are the unique techniques. This study investigated the unique or shared techniques in RCTs of cognitive-behavioural therapy (CBT) and short-term psychodynamic psychotherapy (STPP). Psychotherapeutic techniques were coded from 42 masked treatment descriptions of RCTs in the field of depression (1979-2010). CBT techniques were often used in studies identified as either CBT or STPP. However, STPP techniques were only used in STPP-identified studies. Empirical clustering of treatment descriptions did not confirm the original distinction of CBT versus STPP, but instead showed substantial heterogeneity within both approaches. Extraction of psychotherapeutic techniques from the treatment descriptions is feasible and could be used as a content-based approach to classify treatments in systematic reviews and meta-analyses.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper describes the participation of DAEDALUS at ImageCLEF 2011 Medical Retrieval task. We have focused on multimodal (or mixed) experiments that combine textual and visual retrieval. The main objective of our research has been to evaluate the effect on the medical retrieval process of the existence of an extended corpus that is annotated with the image type, associated to both the image itself and also to its textual description. For this purpose, an image classifier has been developed to tag each document with its class (1st level of the hierarchy: Radiology, Microscopy, Photograph, Graphic, Other) and subclass (2nd level: AN, CT, MR, etc.). For the textual-based experiments, several runs using different semantic expansion techniques have been performed. For the visual-based retrieval, different runs are defined by the corpus used in the retrieval process and the strategy for obtaining the class and/or subclass. The best results are achieved in runs that make use of the image subclass based on the classification of the sample images. Although different multimodal strategies have been submitted, none of them has shown to be able to provide results that are at least comparable to the ones achieved by the textual retrieval alone. We believe that we have been unable to find a metric for the assessment of the relevance of the results provided by the visual and textual processes

Relevância:

90.00% 90.00%

Publicador:

Resumo:

One of the advantages of social networks is the possibility to socialize and personalize the content created or shared by the users. In mobile social networks, where the devices have limited capabilities in terms of screen size and computing power, Multimedia Recommender Systems help to present the most relevant content to the users, depending on their tastes, relationships and profile. Previous recommender systems are not able to cope with the uncertainty of automated tagging and are knowledge domain dependant. In addition, the instantiation of a recommender in this domain should cope with problems arising from the collaborative filtering inherent nature (cold start, banana problem, large number of users to run, etc.). The solution presented in this paper addresses the abovementioned problems by proposing a hybrid image recommender system, which combines collaborative filtering (social techniques) with content-based techniques, leaving the user the liberty to give these processes a personal weight. It takes into account aesthetics and the formal characteristics of the images to overcome the problems of current techniques, improving the performance of existing systems to create a mobile social networks recommender with a high degree of adaptation to any kind of user.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Music similarity query based on acoustic content is becoming important with the ever-increasing growth of the music information from emerging applications such as digital libraries and WWW. However, relative techniques are still in their infancy and much less than satisfactory. In this paper, we present a novel index structure, called Composite Feature tree, CF-tree, to facilitate efficient content-based music search adopting multiple musical features. Before constructing the tree structure, we use PCA to transform the extracted features into a new space sorted by the importance of acoustic features. The CF-tree is a balanced multi-way tree structure where each level represents the data space at different dimensionalities. The PCA transformed data and reduced dimensions in the upper levels can alleviate suffering from dimensionality curse. To accurately mimic human perception, an extension, named CF+-tree, is proposed, which further applies multivariable regression to determine the weight of each individual feature. We conduct extensive experiments to evaluate the proposed structures against state-of-art techniques. The experimental results demonstrate superiority of our technique.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

More and more researchers have realized that ontologies will play a critical role in the development of the Semantic Web, the next generation Web in which content is not only consumable by humans, but also by software agents. The development of tools to support ontology management including creation, visualization, annotation, database storage, and retrieval is thus extremely important. We have developed ImageSpace, an image ontology creation and annotation tool that features (1) full support for the standard web ontology language DAML+OIL; (2) image ontology creation, visualization, image annotation and display in one integrated framework; (3) ontology consistency assurance; and (4) storing ontologies and annotations in relational databases. It is expected that the availability of such a tool will greatly facilitate the creation of image repositories as islands of the Semantic Web.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

В статье рассмотрена проблема семантической разницы между содержимым мультимедиа и его текстовым описанием, определяемым вручную. Предложен комбинированный подход к представлению семантики мультимедиа, основанный на объединении близких по содержанию и текстовому описанию мультимедиа в классы, содержащие обобщённые описания объектов, связей между ними и ключевых слов текстовых метаданных из некоторого тезауруса. Для формирования этих классов используются операции иерархической кластеризации и машинного обучения. Данный подход позволяет расширить область поиска и навигации мультимедиа благодаря привлечению медиа-данных, имеющих схожее содержание и текстовое описание.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Short text messages a.k.a Microposts (e.g. Tweets) have proven to be an effective channel for revealing information about trends and events, ranging from those related to Disaster (e.g. hurricane Sandy) to those related to Violence (e.g. Egyptian revolution). Being informed about such events as they occur could be extremely important to authorities and emergency professionals by allowing such parties to immediately respond. In this work we study the problem of topic classification (TC) of Microposts, which aims to automatically classify short messages based on the subject(s) discussed in them. The accurate TC of Microposts however is a challenging task since the limited number of tokens in a post often implies a lack of sufficient contextual information. In order to provide contextual information to Microposts, we present and evaluate several graph structures surrounding concepts present in linked knowledge sources (KSs). Traditional TC techniques enrich the content of Microposts with features extracted only from the Microposts content. In contrast our approach relies on the generation of different weighted semantic meta-graphs extracted from linked KSs. We introduce a new semantic graph, called category meta-graph. This novel meta-graph provides a more fine grained categorisation of concepts providing a set of novel semantic features. Our findings show that such category meta-graph features effectively improve the performance of a topic classifier of Microposts. Furthermore our goal is also to understand which semantic feature contributes to the performance of a topic classifier. For this reason we propose an approach for automatic estimation of accuracy loss of a topic classifier on new, unseen Microposts. We introduce and evaluate novel topic similarity measures, which capture the similarity between the KS documents and Microposts at a conceptual level, considering the enriched representation of these documents. Extensive evaluation in the context of Emergency Response (ER) and Violence Detection (VD) revealed that our approach outperforms previous approaches using single KS without linked data and Twitter data only up to 31.4% in terms of F1 measure. Our main findings indicate that the new category graph contains useful information for TC and achieves comparable results to previously used semantic graphs. Furthermore our results also indicate that the accuracy of a topic classifier can be accurately predicted using the enhanced text representation, outperforming previous approaches considering content-based similarity measures. © 2014 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This article presents the principal results of the Ph.D. thesis A Novel Method for Content-Based Image Retrieval in Art Image Collections Utilizing Colour Semantics by Krassimira Ivanova (Institute of Mathematics and Informatics, BAS), successfully defended at Hasselt Uni-versity in Belgium, Faculty of Science, on 15 November 2011.