966 resultados para Conjugate gradient methods


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Os efeitos Delaware e Groningen são dois tipos de anomalia que afetam ferramentas de eletrodos para perfilagem de resistividade. Ambos os efeitos ocorrem quando há uma camada muito resistiva, como anidrita ou halita, acima do(s) reservatório(s), produzindo um gradiente de resistividade muito similar ao produzido por um contato óleo-água. Os erros de interpretação produzidos têm ocasionado prejuízos consideráveis à indústria de petróleo. A PETROBRÁS, em particular, tem enfrentado problemas ocasionados pelo efeito Groningen sobre perfis obtidos em bacias paleozóicas da região norte do Brasil. Neste trabalho adaptamos, com avanços, uma metodologia desenvolvida por LOVELL (1990), baseada na equação de Helmholtz para HΦ, para modelagem dos efeitos Delaware e Groningen. Solucionamos esta equação por elementos finitos triangulares e retangulares. O sistema linear gerado pelo método de elementos finitos é resolvido por gradiente bi-conjugado pré-condicionado, sendo este pré-condicionador obtido por decomposição LU (Low Up) da matriz de stiffness. As voltagens são calculadas por um algoritmo, mais preciso, recentemente desenvolvido. Os perfis são gerados por um novo algoritmo envolvendo uma sucessiva troca de resistividade de subdomínios. Este procedimento permite obter cada nova matriz de stiffness a partir da anterior pelo cálculo, muito mais rápido, da variação dessa matriz. Este método permite ainda, acelerar a solução iterativa pelo uso da solução na posição anterior da ferramenta. Finalmente geramos perfis sintéticos afetados por cada um dos efeitos para um modelo da ferramenta Dual Laterolog.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is well known that constant-modulus-based algorithms present a large mean-square error for high-order quadrature amplitude modulation (QAM) signals, which may damage the switching to decision-directed-based algorithms. In this paper, we introduce a regional multimodulus algorithm for blind equalization of QAM signals that performs similar to the supervised normalized least-mean-squares (NLMS) algorithm, independently of the QAM order. We find a theoretical relation between the coefficient vector of the proposed algorithm and the Wiener solution and also provide theoretical models for the steady-state excess mean-square error in a nonstationary environment. The proposed algorithm in conjunction with strategies to speed up its convergence and to avoid divergence can bypass the switching mechanism between the blind mode and the decision-directed mode. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a non linear technique to invert strong motion records with the aim of obtaining the final slip and rupture velocity distributions on the fault plane. In this thesis, the ground motion simulation is obtained evaluating the representation integral in the frequency. The Green’s tractions are computed using the discrete wave-number integration technique that provides the full wave-field in a 1D layered propagation medium. The representation integral is computed through a finite elements technique, based on a Delaunay’s triangulation on the fault plane. The rupture velocity is defined on a coarser regular grid and rupture times are computed by integration of the eikonal equation. For the inversion, the slip distribution is parameterized by 2D overlapping Gaussian functions, which can easily relate the spectrum of the possible solutions with the minimum resolvable wavelength, related to source-station distribution and data processing. The inverse problem is solved by a two-step procedure aimed at separating the computation of the rupture velocity from the evaluation of the slip distribution, the latter being a linear problem, when the rupture velocity is fixed. The non-linear step is solved by optimization of an L2 misfit function between synthetic and real seismograms, and solution is searched by the use of the Neighbourhood Algorithm. The conjugate gradient method is used to solve the linear step instead. The developed methodology has been applied to the M7.2, Iwate Nairiku Miyagi, Japan, earthquake. The estimated magnitude seismic moment is 2.6326 dyne∙cm that corresponds to a moment magnitude MW 6.9 while the mean the rupture velocity is 2.0 km/s. A large slip patch extends from the hypocenter to the southern shallow part of the fault plane. A second relatively large slip patch is found in the northern shallow part. Finally, we gave a quantitative estimation of errors associates with the parameters.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of this study was to assess the performance of a new motion correction algorithm. Twenty-five dynamic MR mammography (MRM) data sets and 25 contrast-enhanced three-dimensional peripheral MR angiographic (MRA) data sets which were affected by patient motion of varying severeness were selected retrospectively from routine examinations. Anonymized data were registered by a new experimental elastic motion correction algorithm. The algorithm works by computing a similarity measure for the two volumes that takes into account expected signal changes due to the presence of a contrast agent while penalizing other signal changes caused by patient motion. A conjugate gradient method is used to find the best possible set of motion parameters that maximizes the similarity measures across the entire volume. Images before and after correction were visually evaluated and scored by experienced radiologists with respect to reduction of motion, improvement of image quality, disappearance of existing lesions or creation of artifactual lesions. It was found that the correction improves image quality (76% for MRM and 96% for MRA) and diagnosability (60% for MRM and 96% for MRA).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The program PECET (Boundary Element Program in Three-Dimensional Elasticity) is presented in this paper. This program, written in FORTRAN V and implemen ted on a UNIVAC 1100,has more than 10,000 sentences and 96 routines and has a lot of capabilities which will be explained in more detail. The object of the program is the analysis of 3-D piecewise heterogeneous elastic domains, using a subregionalization process and 3-D parabolic isopara, metric boundary elements. The program uses special data base management which will be described below, and the modularity followed to write it gives a great flexibility to the package. The Method of Analysis includes an adaptive integration process, an original treatment of boundary conditions, a complete treatment of body forces, the utilization of a Modified Conjugate Gradient Method of solution and an original process of storage which makes it possible to save a lot of memory.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper investigates the performance analysis of separation of mutually independent sources in nonlinear models. The nonlinear mapping constituted by an unsupervised linear mixture is followed by an unknown and invertible nonlinear distortion, are found in many signal processing cases. Generally, blind separation of sources from their nonlinear mixtures is rather difficult. We propose using a kernel density estimator incorporated with equivariant gradient analysis to separate the sources with nonlinear distortion. The kernel density estimator parameters of which are iteratively updated to minimize the output independence expressed as a mutual information criterion. The equivariant gradient algorithm has the form of nonlinear decorrelation to perform the convergence analysis. Experiments are proposed to illustrate these results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A Cauchy problem for general elliptic second-order linear partial differential equations in which the Dirichlet data in H½(?1 ? ?3) is assumed available on a larger part of the boundary ? of the bounded domain O than the boundary portion ?1 on which the Neumann data is prescribed, is investigated using a conjugate gradient method. We obtain an approximation to the solution of the Cauchy problem by minimizing a certain discrete functional and interpolating using the finite diference or boundary element method. The minimization involves solving equations obtained by discretising mixed boundary value problems for the same operator and its adjoint. It is proved that the solution of the discretised optimization problem converges to the continuous one, as the mesh size tends to zero. Numerical results are presented and discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The inverse problem of determining a spacewise-dependent heat source for the parabolic heat equation using the usual conditions of the direct problem and information from one supplementary temperature measurement at a given instant of time is studied. This spacewise-dependent temperature measurement ensures that this inverse problem has a unique solution, but the solution is unstable and hence the problem is ill-posed. We propose a variational conjugate gradient-type iterative algorithm for the stable reconstruction of the heat source based on a sequence of well-posed direct problems for the parabolic heat equation which are solved at each iteration step using the boundary element method. The instability is overcome by stopping the iterative procedure at the first iteration for which the discrepancy principle is satisfied. Numerical results are presented which have the input measured data perturbed by increasing amounts of random noise. The numerical results show that the proposed procedure yields stable and accurate numerical approximations after only a few iterations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we are concerned with the optimal control boundary control of a second order parabolic heat equation. Using the results in [Evtushenko, 1997] and spatial central finite difference with diagonally implicit Runge-Kutta method (DIRK) is applied to solve the parabolic heat equation. The conjugate gradient method (CGM) is applied to solve the distributed control problem. Numerical results are reported.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The determination of the displacement and the space-dependent force acting on a vibrating structure from measured final or time-average displacement observation is thoroughly investigated. Several aspects related to the existence and uniqueness of a solution of the linear but ill-posed inverse force problems are highlighted. After that, in order to capture the solution a variational formulation is proposed and the gradient of the least-squares functional that is minimized is rigorously and explicitly derived. Numerical results obtained using the Landweber method and the conjugate gradient method are presented and discussed illustrating the convergence of the iterative procedures for exact input data. Furthermore, for noisy data the semi-convergence phenomenon appears, as expected, and stability is restored by stopping the iterations according to the discrepancy principle criterion once the residual becomes close to the amount of noise. The present investigation will be significant to researchers concerned with wave propagation and control of vibrating structures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a dynamic distributed load balancing algorithm for parallel, adaptive finite element simulations using preconditioned conjugate gradient solvers based on domain-decomposition. The load balancer is designed to maintain good partition aspect ratios. It can calculate a balancing flow using different versions of diffusion and a variant of breadth first search. Elements to be migrated are chosen according to a cost function aiming at the optimization of subdomain shapes. We show how to use information from the second step to guide the first. Experimental results using Bramble's preconditioner and comparisons to existing state-ot-the-art load balancers show the benefits of the construction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a dynamic distributed load balancing algorithm for parallel, adaptive finite element simulations using preconditioned conjugate gradient solvers based on domain-decomposition. The load balancer is designed to maintain good partition aspect ratios. It calculates a balancing flow using different versions of diffusion and a variant of breadth first search. Elements to be migrated are chosen according to a cost function aiming at the optimization of subdomain shapes. We show how to use information from the second step to guide the first. Experimental results using Bramble's preconditioner and comparisons to existing state-of-the-art balancers show the benefits of the construction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Photothermal imaging allows to inspect the structure of composite materials by means of nondestructive tests. The surface of a medium is heated at a number of locations. The resulting temperature field is recorded on the same surface. Thermal waves are strongly damped. Robust schemes are needed to reconstruct the structure of the medium from the decaying time dependent temperature field. The inverse problem is formulated as a weighted optimization problem with a time dependent constraint. The inclusions buried in the medium and their material constants are the design variables. We propose an approximation scheme in two steps. First, Laplace transforms are used to generate an approximate optimization problem with a small number of stationary constraints. Then, we implement a descent strategy alternating topological derivative techniques to reconstruct the geometry of inclusions with gradient methods to identify their material parameters. Numerical simulations assess the effectivity of the technique.