915 resultados para Computer Vision Android
Resumo:
Today several different unsupervised classification algorithms are commonly used to cluster similar patterns in a data set based only on its statistical properties. Specially in image data applications, self-organizing methods for unsupervised classification have been successfully applied for clustering pixels or group of pixels in order to perform segmentation tasks. The first important contribution of this paper refers to the development of a self-organizing method for data classification, named Enhanced Independent Component Analysis Mixture Model (EICAMM), which was built by proposing some modifications in the Independent Component Analysis Mixture Model (ICAMM). Such improvements were proposed by considering some of the model limitations as well as by analyzing how it should be improved in order to become more efficient. Moreover, a pre-processing methodology was also proposed, which is based on combining the Sparse Code Shrinkage (SCS) for image denoising and the Sobel edge detector. In the experiments of this work, the EICAMM and other self-organizing models were applied for segmenting images in their original and pre-processed versions. A comparative analysis showed satisfactory and competitive image segmentation results obtained by the proposals presented herein. (C) 2008 Published by Elsevier B.V.
Resumo:
This paper proposes a novel computer vision approach that processes video sequences of people walking and then recognises those people by their gait. Human motion carries different information that can be analysed in various ways. The skeleton carries motion information about human joints, and the silhouette carries information about boundary motion of the human body. Moreover, binary and gray-level images contain different information about human movements. This work proposes to recover these different kinds of information to interpret the global motion of the human body based on four different segmented image models, using a fusion model to improve classification. Our proposed method considers the set of the segmented frames of each individual as a distinct class and each frame as an object of this class. The methodology applies background extraction using the Gaussian Mixture Model (GMM), a scale reduction based on the Wavelet Transform (WT) and feature extraction by Principal Component Analysis (PCA). We propose four new schemas for motion information capture: the Silhouette-Gray-Wavelet model (SGW) captures motion based on grey level variations; the Silhouette-Binary-Wavelet model (SBW) captures motion based on binary information; the Silhouette-Edge-Binary model (SEW) captures motion based on edge information and the Silhouette Skeleton Wavelet model (SSW) captures motion based on skeleton movement. The classification rates obtained separately from these four different models are then merged using a new proposed fusion technique. The results suggest excellent performance in terms of recognising people by their gait.
Resumo:
Extracting human postural information from video sequences has proved a difficult research question. The most successful approaches to date have been based on particle filtering, whereby the underlying probability distribution is approximated by a set of particles. The shape of the underlying observational probability distribution plays a significant role in determining the success, both accuracy and efficiency, of any visual tracker. In this paper we compare approaches used by other authors and present a cost path approach which is commonly used in image segmentation problems, however is currently not widely used in tracking applications.
Resumo:
The reconstruction of a complex scene from multiple images is a fundamental problem in the field of computer vision. Volumetric methods have proven to be a strong alternative to traditional correspondence-based methods due to their flexible visibility models. In this paper we analyse existing methods for volumetric reconstruction and identify three key properties of voxel colouring algorithms: a water-tight surface model, a monotonic carving order, and causality. We present a new Voxel Colouring algorithm which embeds all reconstructions of a scene into a single output. While modelling exact visibility for arbitrary camera locations, Embedded Voxel Colouring removes the need for a priori threshold selection present in previous work. An efficient implementation is given along with results demonstrating the advantages of posteriori threshold selection.
Resumo:
This work discusses the use of optical flow to generate the sensorial information a mobile robot needs to react to the presence of obstacles when navigating in a non-structured environment. A sensing system based on optical flow and time-to-collision calculation is here proposed and experimented, which accomplishes two important paradigms. The first one is that all computations are performed onboard the robot, in spite of the limited computational capability available. The second one is that the algorithms for optical flow and time-to-collision calculations are fast enough to give the mobile robot the capability of reacting to any environmental change in real-time. Results of real experiments in which the sensing system here proposed is used as the only source of sensorial data to guide a mobile robot to avoid obstacles while wandering around are presented, and the analysis of such results allows validating the proposed sensing system.
Resumo:
Steatosis, also known as fatty liver, corresponds to an abnormal retention of lipids within the hepatic cells and reflects an impairment of the normal processes of synthesis and elimination of fat. Several causes may lead to this condition, namely obesity, diabetes, or alcoholism. In this paper an automatic classification algorithm is proposed for the diagnosis of the liver steatosis from ultrasound images. The features are selected in order to catch the same characteristics used by the physicians in the diagnosis of the disease based on visual inspection of the ultrasound images. The algorithm, designed in a Bayesian framework, computes two images: i) a despeckled one, containing the anatomic and echogenic information of the liver, and ii) an image containing only the speckle used to compute the textural features. These images are computed from the estimated RF signal generated by the ultrasound probe where the dynamic range compression performed by the equipment is taken into account. A Bayes classifier, trained with data manually classified by expert clinicians and used as ground truth, reaches an overall accuracy of 95% and a 100% of sensitivity. The main novelties of the method are the estimations of the RF and speckle images which make it possible to accurately compute textural features of the liver parenchyma relevant for the diagnosis.
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica Ramo Automação e Electrónica Industrial
Resumo:
The mechanisms of speech production are complex and have been raising attention from researchers of both medical and computer vision fields. In the speech production mechanism, the articulator’s study is a complex issue, since they have a high level of freedom along this process, namely the tongue, which instigates a problem in its control and observation. In this work it is automatically characterized the tongues shape during the articulation of the oral vowels of Portuguese European by using statistical modeling on MR-images. A point distribution model is built from a set of images collected during artificially sustained articulations of Portuguese European sounds, which can extract the main characteristics of the motion of the tongue. The model built in this work allows under standing more clearly the dynamic speech events involved during sustained articulations. The tongue shape model built can also be useful for speech rehabilitation purposes, specifically to recognize the compensatory movements of the articulators during speech production.
Resumo:
Electrocardiographic (ECG) signals are emerging as a recent trend in the field of biometrics. In this paper, we propose a novel ECG biometric system that combines clustering and classification methodologies. Our approach is based on dominant-set clustering, and provides a framework for outlier removal and template selection. It enhances the typical workflows, by making them better suited to new ECG acquisition paradigms that use fingers or hand palms, which lead to signals with lower signal to noise ratio, and more prone to noise artifacts. Preliminary results show the potential of the approach, helping to further validate the highly usable setups and ECG signals as a complementary biometric modality.
Resumo:
A deteção e seguimento de pessoas tem uma grande variedade de aplicações em visão computacional. Embora tenha sido alvo de anos de investigação, continua a ser um tópico em aberto, e ainda hoje, um grande desafio a obtenção de uma abordagem que inclua simultaneamente exibilidade e precisão. O trabalho apresentado nesta dissertação desenvolve um caso de estudo sobre deteção e seguimento automático de faces humanas, em ambiente de sala de reuniões, concretizado num sistema flexível de baixo custo. O sistema proposto é baseado no sistema operativo GNU's Not Unix (GNU) linux, e é dividido em quatro etapas, a aquisição de vídeo, a deteção da face, o tracking e reorientação da posição da câmara. A aquisição consiste na captura de frames de vídeo das três câmaras Internet Protocol (IP) Sony SNC-RZ25P, instaladas na sala, através de uma rede Local Area Network (LAN) também ele já existente. Esta etapa fornece os frames de vídeo para processamento à detecção e tracking. A deteção usa o algoritmo proposto por Viola e Jones, para a identificação de objetos, baseando-se nas suas principais características, que permite efetuar a deteção de qualquer tipo de objeto (neste caso faces humanas) de uma forma genérica e em tempo real. As saídas da deteção, quando é identificado com sucesso uma face, são as coordenadas do posicionamento da face, no frame de vídeo. As coordenadas da face detetada são usadas pelo algoritmo de tracking, para a partir desse ponto seguir a face pelos frames de vídeo subsequentes. A etapa de tracking implementa o algoritmo Continuously Adaptive Mean-SHIFT (Camshift) que baseia o seu funcionamento na pesquisa num mapa de densidade de probabilidade, do seu valor máximo, através de iterações sucessivas. O retorno do algoritmo são as coordenadas da posição e orientação da face. Estas coordenadas permitem orientar o posicionamento da câmara de forma que a face esteja sempre o mais próximo possível do centro do campo de visão da câmara. Os resultados obtidos mostraram que o sistema de tracking proposto é capaz de reconhecer e seguir faces em movimento em sequências de frames de vídeo, mostrando adequabilidade para aplicação de monotorização em tempo real.
Resumo:
A presente dissertação endereça o desenvolvimento de um sistema de visão stereo ativo para os robôs de futebol robótico da equipa ISePorto do ISEP, de modo a que estes tirem o máximo partido das câmaras rotativas neles existentes. Este trabalho surge da necessidade de melhorar a capacidade de perceção do ambiente por parte dos robôs, principalmente da perceção da bola quando não está no plano do campo e dos robôs adversários. Esta necessidade surge devido ao aumento da dinâmica que se tem vindo a veri car ultimamente nas competições. Para tal, foram estudados algumas trabalhos relacionados no que diz respeito a sistemas de visão stereo com baselines variáveis e eixos de rotação em ambas as câmaras, bem como fundamentos de visão stereo. Foi proposta uma arquitetura para o sistema de visão ativo de modo a ser aplicado em qualquer robô da equipa MSL (Middle Size League). Para tornar possível a implementação desta arquitetura foi desenvolvido um procedimento para a calibração e determinação em tempo real dos parâmetros extrínsecos do par stereo em função da posição angular dos eixos rotativos do robô. O sistema de visão foi também dotado de capacidade de sincronismo e foram implementadas funcionalidades ao nível de software que possibilitam a deteção de objetos na imagem, a correspondência de objetos presentes nas imagens de ambas as câmaras e consequentemente a determinação das posições tridimensionais desses objetos relativamente ao robô. O sistema desenvolvido foi testado e validado em cenário MSL ao nível de perceção da bola, robôs adversários e linhas do campo. Os resultados obtidos apresentam uma melhoria signi cativa, face à implementação atual dos robôs, na perceção tridimensional da bola quando não está no plano do campo, e dos robôs adversários.
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Automação e Electrónica Industrial
Resumo:
Computational Vision stands as the most comprehensive way of knowing the surrounding environment. Accordingly to that, this study aims to present a method to obtain from a common webcam, environment information to guide a mobile differential robot through a path similar to a roadway.
Resumo:
Computer Vision Syndrome (CSV): 1) Conjunto de complicações desencadeadas com o acto de fixação para perto, que são experimentadas durante ou após o uso do computador; 2) Distúrbio caracterizado pelo esforço repetitivo de perto traduzindo-se em sintomas oculares e não oculares. Pertinência do estudo: os trabalhadores de telecomunicações desempenham actividades prolongadas de fixação para perto, o que pode originar queixas de fadiga visual devido ao stress exercido sob a convergência acomodativa. Objectivos do estudo: 1) Identificar quais os parâmetros da visão binocular que são mais influenciados pelo uso prolongado do computador; 2) Comparar a visão binocular em dois grupos de indivíduos com e sem sintomatologia ocular.
Resumo:
Drilling of composites plates normally uses traditional techniques but damage risk is high. NDT use is important. Damage in a carbon/epoxy plate is evaluated by enhanced X-rays. Four different drills are used. The images are analysed using Computational Vision techniques. Surface roughness is compared. Results suggest strategies for delamination reduction.