835 resultados para Computer Learning
Resumo:
The application of information technologies (specially the Internet, Web 2.0 and social tools) make informal learning more visible. This kind of learning is not linked to an institution or a period of time, but it is important enough to be taken into account. On the one hand, learners should be able to communicate to the institutions they are related to, what skills they possess, whether they were achieved in a formal or informal way. On the other hand the companies and educational institutions need to have a deeper knowledge about the competencies of their staff. The TRAILER project provides a methodology supported by a technological framework to facilitate communication about informal learning between businesses, employees and learners. The paper presents the project and some of the work carried out, an exploratory analysis about how informal learning is considered and the technological framework proposed. Whilst challenges remain in terms of establishing the meaningfulness of technological engagement for employees and businesses, the continuing transformation of the social, technological and educational environment is likely to lead to greater emphasis for the effective exploitation of informal learning.
Resumo:
In this paper we discuss how the inclusion of semantic functionalities in a Learning Objects Repository allows a better characterization of the learning materials enclosed and improves their retrieval through the adoption of some query expansion strategies. Thus, we started to regard the use of ontologies to automatically suggest additional concepts when users are filling some metadata fields and add new terms to the ones initially provided when users specify the keywords with interest in a query. Dealing with different domain areas and having considered impractical the development of many different ontologies, we adopted some strategies for reusing ontologies in order to have the knowledge necessary in our institutional repository. In this paper we make a review of the area of knowledge reuse and discuss our approach.
Resumo:
Several Web-based on-line judges or on-line programming trainers have been developed in order to allow students to train their programming skills. However, their pedagogical functionalities in the learning of programming have not been clearly defined. EduJudge is a project which aims to integrate the “UVA On-line Judge”, an existing on-line programming trainer with an important number of problems and users, into an effective educational environment consisting of the e-learning platform Moodle and the competitive learning tool QUESTOURnament. The result is the EduJudge system which allows teachers to apply different pedagogical approaches using a proven e-learning platform, makes problems easy to search through an effective search engine, and provides an automated evaluation of the solutions submitted to these problems. The final objective is to provide new learning strategies to motivate students and present programming as an easy and attractive challenge. EduJudge has been tried and tested in three algorithms and programming courses in three different Engineering degrees. The students’ motivation and satisfaction levels were analysed alongside the effects of the EduJudge system on students’ academic outcomes. Results indicate that both students and teachers found that among other multiple benefits the EduJudge system facilitates the learning process. Furthermore, the experi- ment also showed an improvement in students’ academic outcomes. It must be noted that the students’ level of satisfaction did not depend on their computer skills or their gender.
Resumo:
E-Learning frameworks are conceptual tools to organize networks of elearning services. Most frameworks cover areas that go beyond the scope of e-learning, from course to financial management, and neglects the typical activities in everyday life of teachers and students at schools such as the creation, delivery, resolution and evaluation of assignments. This paper presents the Ensemble framework - an e-learning framework exclusively focused on the teaching-learning process through the coordination of pedagogical services. The framework presents an abstract data, integration and evaluation model based on content and communications specifications. These specifications must base the implementation of networks in specialized domains with complex evaluations. In this paper we specialize the framework for two domains with complex evaluation: computer programming and computer-aided design (CAD). For each domain we highlight two Ensemble hotspots: data and evaluations procedures. In the former we formally describe the exercise and present possible extensions. In the latter, we describe the automatic evaluation procedures.
Resumo:
Managing programming exercises require several heterogeneous systems such as evaluation engines, learning objects repositories and exercise resolution environments. The coordination of networks of such disparate systems is rather complex. These tools would be too specific to incorporate in an e-Learning platform. Even if they could be provided as pluggable components, the burden of maintaining them would be prohibitive to institutions with few courses in those domains. This work presents a standard based approach for the coordination of a network of e-Learning systems participating on the automatic evaluation of programming exercises. The proposed approach uses a pivot component to orchestrate the interaction among all the systems using communication standards. This approach was validated through its effective use on classroom and we present some preliminary results.
Resumo:
Tese de doutoramento em Ciências da Educação, área de Teoria Curricular e Ensino das Ciências
Resumo:
The aim of this article is to show how it is possible to integrate stories and ICT in Content Language Integrated Learning (CLIL) for English as a foreign language (EFL) learning in bilingual schools. Two Units of Work are presented. One, for the second year of Primary, is based on a Science topic, ‘Materials’. The story used is ‘The three little pigs’ and the computer program ‘JClic’. The other one is based on a Science and Arts topic for the sixth year of Primary, the story used is ‘Charlotte’s Web’ and the computer program ‘Atenex’.
Resumo:
This Thesis describes the application of automatic learning methods for a) the classification of organic and metabolic reactions, and b) the mapping of Potential Energy Surfaces(PES). The classification of reactions was approached with two distinct methodologies: a representation of chemical reactions based on NMR data, and a representation of chemical reactions from the reaction equation based on the physico-chemical and topological features of chemical bonds. NMR-based classification of photochemical and enzymatic reactions. Photochemical and metabolic reactions were classified by Kohonen Self-Organizing Maps (Kohonen SOMs) and Random Forests (RFs) taking as input the difference between the 1H NMR spectra of the products and the reactants. The development of such a representation can be applied in automatic analysis of changes in the 1H NMR spectrum of a mixture and their interpretation in terms of the chemical reactions taking place. Examples of possible applications are the monitoring of reaction processes, evaluation of the stability of chemicals, or even the interpretation of metabonomic data. A Kohonen SOM trained with a data set of metabolic reactions catalysed by transferases was able to correctly classify 75% of an independent test set in terms of the EC number subclass. Random Forests improved the correct predictions to 79%. With photochemical reactions classified into 7 groups, an independent test set was classified with 86-93% accuracy. The data set of photochemical reactions was also used to simulate mixtures with two reactions occurring simultaneously. Kohonen SOMs and Feed-Forward Neural Networks (FFNNs) were trained to classify the reactions occurring in a mixture based on the 1H NMR spectra of the products and reactants. Kohonen SOMs allowed the correct assignment of 53-63% of the mixtures (in a test set). Counter-Propagation Neural Networks (CPNNs) gave origin to similar results. The use of supervised learning techniques allowed an improvement in the results. They were improved to 77% of correct assignments when an ensemble of ten FFNNs were used and to 80% when Random Forests were used. This study was performed with NMR data simulated from the molecular structure by the SPINUS program. In the design of one test set, simulated data was combined with experimental data. The results support the proposal of linking databases of chemical reactions to experimental or simulated NMR data for automatic classification of reactions and mixtures of reactions. Genome-scale classification of enzymatic reactions from their reaction equation. The MOLMAP descriptor relies on a Kohonen SOM that defines types of bonds on the basis of their physico-chemical and topological properties. The MOLMAP descriptor of a molecule represents the types of bonds available in that molecule. The MOLMAP descriptor of a reaction is defined as the difference between the MOLMAPs of the products and the reactants, and numerically encodes the pattern of bonds that are broken, changed, and made during a chemical reaction. The automatic perception of chemical similarities between metabolic reactions is required for a variety of applications ranging from the computer validation of classification systems, genome-scale reconstruction (or comparison) of metabolic pathways, to the classification of enzymatic mechanisms. Catalytic functions of proteins are generally described by the EC numbers that are simultaneously employed as identifiers of reactions, enzymes, and enzyme genes, thus linking metabolic and genomic information. Different methods should be available to automatically compare metabolic reactions and for the automatic assignment of EC numbers to reactions still not officially classified. In this study, the genome-scale data set of enzymatic reactions available in the KEGG database was encoded by the MOLMAP descriptors, and was submitted to Kohonen SOMs to compare the resulting map with the official EC number classification, to explore the possibility of predicting EC numbers from the reaction equation, and to assess the internal consistency of the EC classification at the class level. A general agreement with the EC classification was observed, i.e. a relationship between the similarity of MOLMAPs and the similarity of EC numbers. At the same time, MOLMAPs were able to discriminate between EC sub-subclasses. EC numbers could be assigned at the class, subclass, and sub-subclass levels with accuracies up to 92%, 80%, and 70% for independent test sets. The correspondence between chemical similarity of metabolic reactions and their MOLMAP descriptors was applied to the identification of a number of reactions mapped into the same neuron but belonging to different EC classes, which demonstrated the ability of the MOLMAP/SOM approach to verify the internal consistency of classifications in databases of metabolic reactions. RFs were also used to assign the four levels of the EC hierarchy from the reaction equation. EC numbers were correctly assigned in 95%, 90%, 85% and 86% of the cases (for independent test sets) at the class, subclass, sub-subclass and full EC number level,respectively. Experiments for the classification of reactions from the main reactants and products were performed with RFs - EC numbers were assigned at the class, subclass and sub-subclass level with accuracies of 78%, 74% and 63%, respectively. In the course of the experiments with metabolic reactions we suggested that the MOLMAP / SOM concept could be extended to the representation of other levels of metabolic information such as metabolic pathways. Following the MOLMAP idea, the pattern of neurons activated by the reactions of a metabolic pathway is a representation of the reactions involved in that pathway - a descriptor of the metabolic pathway. This reasoning enabled the comparison of different pathways, the automatic classification of pathways, and a classification of organisms based on their biochemical machinery. The three levels of classification (from bonds to metabolic pathways) allowed to map and perceive chemical similarities between metabolic pathways even for pathways of different types of metabolism and pathways that do not share similarities in terms of EC numbers. Mapping of PES by neural networks (NNs). In a first series of experiments, ensembles of Feed-Forward NNs (EnsFFNNs) and Associative Neural Networks (ASNNs) were trained to reproduce PES represented by the Lennard-Jones (LJ) analytical potential function. The accuracy of the method was assessed by comparing the results of molecular dynamics simulations (thermal, structural, and dynamic properties) obtained from the NNs-PES and from the LJ function. The results indicated that for LJ-type potentials, NNs can be trained to generate accurate PES to be used in molecular simulations. EnsFFNNs and ASNNs gave better results than single FFNNs. A remarkable ability of the NNs models to interpolate between distant curves and accurately reproduce potentials to be used in molecular simulations is shown. The purpose of the first study was to systematically analyse the accuracy of different NNs. Our main motivation, however, is reflected in the next study: the mapping of multidimensional PES by NNs to simulate, by Molecular Dynamics or Monte Carlo, the adsorption and self-assembly of solvated organic molecules on noble-metal electrodes. Indeed, for such complex and heterogeneous systems the development of suitable analytical functions that fit quantum mechanical interaction energies is a non-trivial or even impossible task. The data consisted of energy values, from Density Functional Theory (DFT) calculations, at different distances, for several molecular orientations and three electrode adsorption sites. The results indicate that NNs require a data set large enough to cover well the diversity of possible interaction sites, distances, and orientations. NNs trained with such data sets can perform equally well or even better than analytical functions. Therefore, they can be used in molecular simulations, particularly for the ethanol/Au (111) interface which is the case studied in the present Thesis. Once properly trained, the networks are able to produce, as output, any required number of energy points for accurate interpolations.
Resumo:
Remote experimentation laboratories are systems based on real equipment, allowing students to perform practical work through a computer connected to the internet. In engineering fields lab activities play a fundamental role. Distance learning has not demonstrated good results in engineering fields because traditional lab activities cannot be covered by this paradigm. These activities can be set for one or for a group of students who work from different locations. All these configurations lead to considering a flexible model that covers all possibilities (for an individual or a group). An inter-continental network of remote laboratories supported by both European and Latin American institutions of higher education has been formed. In this network context, a learning collaborative model for students working from different locations has been defined. The first considerations are presented.
Resumo:
People do not learn only in formal educational institutions, but also throughout their lives, from their experiences, conversations, observations of others, exploration of the Internet, meetings and conferences, and chance encounters etc. However this informal and non-formal learning can easily remain largely invisible, making it hard for peers and employers to recognize or act upon it. The TRAILER project aims to make this learning visible so that it can benefit both the individual and the organization. The proposed demonstration will show a software solution that (i) helps the learners to capture, organize and classify a wide range of ’informal’ learning taking place in their lives, and (ii) assists the organization in recognizing this learning and use it to help managing human resources (benefiting both parts). This software tool has recently been used in two phases of pilot studies, which have run in four different European countries.
Resumo:
Trabalho apresentado no âmbito do Mestrado em Engenharia Informática, como requisito parcial para obtenção do grau de Mestre em Engenharia Informática
Resumo:
Web-based course management and delivery is regarded by many institutions as a key factor in an increasingly competitive education and training world, but the systems currently available are largely unsatisfactory in terms of supporting collaborative work and access to practical science facilities. These limitations are less important in areas where “pen-and-paper” courseware is the mainstream, but become unacceptably restrictive when student assignments require real-time teamwork and access to laboratory equipment. This paper presents a web-accessible workbench for electronics design and test, which was developed in the scope of an European IST project entitled PEARL, with the aim of supporting two main features: full web access and collaborative learning facilities.
Resumo:
In recent years, mobile learning has emerged as an educational approach to decrease the limitation of learning location and adapt the teaching-learning process to all type of students. However, the large number and variety of Web-enabled devices poses challenges for Web content creators who want to automatic get the delivery context and adapt the content to mobile devices. In this paper we study several approaches to adapt the learning content to mobile phones. We present an architecture for deliver uniform m-Learning content to students in a higher School. The system development is organized in two phases: firstly enabling the educational content to mobile devices and then adapting it to all the heterogeneous mobile platforms. With this approach, Web authors will not need to create specialized pages for each kind of device, since the content is automatically transformed to adapt to any mobile device capabilities from WAP to XHTML MP-compliant devices.
Resumo:
It is widely accepted that solving programming exercises is fundamental to learn how to program. Nevertheless, solving exercises is only effective if students receive an assessment on their work. An exercise solved wrong will consolidate a false belief, and without feedback many students will not be able to overcome their difficulties. However, creating, managing and accessing a large number of exercises, covering all the points in the curricula of a programming course, in classes with large number of students, can be a daunting task without the appropriated tools working in unison. This involves a diversity of tools, from the environments where programs are coded, to automatic program evaluators providing feedback on the attempts of students, passing through the authoring, management and sequencing of programming exercises as learning objects. We believe that the integration of these tools will have a great impact in acquiring programming skills. Our research objective is to manage and coordinate a network of eLearning systems where students can solve computer programming exercises. Networks of this kind include systems such as learning management systems (LMS), evaluation engines (EE), learning objects repositories (LOR) and exercise resolution environments (ERE). Our strategy to achieve the interoperability among these tools is based on a shared definition of programming exercise as a Learning Object (LO).
Resumo:
The LMS plays an indisputable role in the majority of the eLearning environments. This eLearning system type is often used for presenting, solving and grading simple exercises. However, exercises from complex domains, such as computer programming, require heterogeneous systems such as evaluation engines, learning objects repositories and exercise resolution environments. The coordination of networks of such disparate systems is rather complex. This work presents a standard approach for the coordination of a network of eLearning systems supporting the resolution of exercises. The proposed approach use a pivot component embedded in the LMS with two roles: provide an exercise resolution environment and coordinate the communication between the LMS and other systems exposing their functions as web services. The integration of the pivot component with the LMS relies on the Learning Tools Interoperability. The validation of this approach is made through the integration of the component with LMSs from two vendors.