979 resultados para Compositi, CFRP, fatica, tolleranza al danno, grammatura


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article analyses the legality of Israel’s 2007 airstrike on an alleged Syrian nuclear facility at Al-Kibar—an incident that has been largely overlooked by international lawyers to date. The absence of a threat of imminent attack from Syria means Israel’s military action was not a lawful exercise of anticipatory self-defence. Yet, despite Israel’s clear violation of the prohibition on the use of force there was remarkably little condemnation from other states, suggesting the possibility of growing international support for the doctrine of pre-emptive self-defence. This article argues that the muted international reaction to Israel’s pre-emptive action was the result of political factors, and should not be seen as endorsement of the legality of the airstrike. As such, a lack of opinio juris means the Al-Kibar episode cannot be viewed as extending the scope of the customary international law right of self-defence so as to permit the use of force against non-imminent threats. However, two features of this incident—namely, Israel’s failure to offer any legal justification for its airstrike, and the international community’s apparent lack of concern over legality—are also evident in other recent uses of force in the ‘war on terror’ context. These developments may indicate a shift in state practice involving a downgrading of the role of international law in discussions of the use of force. This may signal a declining perception of the legitimacy of the jus ad bellum, at least in cases involving minor uses of force.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of new materials for water purification is of universal importance. Among these types of materials are layered double hydroxides (LDHs). Non-ionic materials pose a significant problem as pollutants. The interaction of methyl orange (MO) and acidic scarlet GR (GR) adsorption on hydrocalumite (Ca/Al-LDH-Cl) were studied by X-ray diffraction (XRD), infrared spectroscopy (MIR), scanning electron microscope (SEM) and near-infrared spectroscopy (NIR). The XRD results revealed that the basal spacing of Ca/Al-LDH-MO was expanded to 2.45 nm, and the MO molecules were intercalated with a inter-penetrating bilayer model in the gallery of LDH, with 49o tilting angle. Yet Ca/Al-LDH-GR was kept the same d-value as Ca/Al-LDH-Cl. The NIR spectrum for Ca/Al-LDH-MO showed a prominent band around 5994 cm-1, assigned to the combination result of the N-H stretching vibrations, which was considered as a mark to assess MO- ion intercalation into Ca/Al-LDH-Cl interlayers. From SEM images, the particle morphology of Ca/Al-LDH-MO mainly changed to irregular platelets, with a “honey-comb” like structure. Yet the Ca/Al-LDH-GR maintained regular hexagons platelets, which was similar to that of Ca/Al-LDH-Cl. All results indicated that MO- ion was intercalated into Ca/Al-LDH-Cl interlayers, and acidic scarlet GR was only adsorped upon Ca/Al-LDH-Cl surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnesium alloys have been of growing interest to various engineering applications, such as the automobile, aerospace, communication and computer industries due to their low density, high specific strength, good machineability and availability as compared with other structural materials. However, most Mg alloys suffer from poor plasticity due to their Hexagonal Close Packed structure. Grain refinement has been proved to be an effective method to enhance the strength and alter the ductility of the materials. Several methods have been proposed to produce materials with nanocrystalline grain structures. So far, most of the research work on nanocrystalline materials has been carried out on Face-Centered Cubic and Body-Centered Cubic metals. However, there has been little investigation of nanocrystalline Mg alloys. In this study, bulk coarse-grained and nanocrystalline Mg alloys were fabricated by a mechanical alloying method. The mixed powder of Mg chips and Al powder was mechanically milled under argon atmosphere for different durations of 0 hours (MA0), 10 hours (MA10), 20 hours (MA20), 30 hours (MA30) and 40 hours (MA40), followed by compaction and sintering. Then the sintered billets were hot-extruded into metallic rods with a 7 mm diameter. The obtained Mg alloys have a nominal composition of Mg–5wt% Al, with grain sizes ranging from 13 μm down to 50 nm, depending on the milling durations. The microstructure characterization and evolution after deformation were carried out by means of Optical microscopy, X-Ray Diffraction, Scanning Electron Microscopy, Transmission Electron Microscopy, Scanning Probe Microscopy and Neutron Diffraction techniques. Nanoindentaion, compression and micro-compression tests on micro-pillars were used to study the size effects on the mechanical behaviour of the Mg alloys. Two kinds of size effects on the mechanical behaviours and deformation mechanisms were investigated: grain size effect and sample size effect. The nanoindentation tests were composed of constant strain rate, constant loading rate and indentation creep tests. The normally reported indentation size effect in single crystal and coarse-grained crystals was observed in both the coarse-grained and nanocrystalline Mg alloys. Since the indentation size effect is correlated to the Geometrically Necessary Dislocations under the indenter to accommodate the plastic deformation, the good agreement between the experimental results and the Indentation Size Effect model indicated that, in the current nanocrystalline MA20 and MA30, the dislocation plasticity was still the dominant deformation mechanism. Significant hardness enhancement with decreasing grain size, down to 58 nm, was found in the nanocrystalline Mg alloys. Further reduction of grain size would lead to a drop in the hardness values. The failure of grain refinement strengthening with the relatively high strain rate sensitivity of nanocrystalline Mg alloys suggested a change in the deformation mechanism. Indentation creep tests showed that the stress exponent was dependent on the loading rate during the loading section of the indentation, which was related to the dislocation structures before the creep starts. The influence of grain size on the mechanical behaviour and strength of extruded coarse-grained and nanocrystalline Mg alloys were investigated using uniaxial compression tests. The macroscopic response of the Mg alloys transited from strain hardening to strain softening behaviour, with grain size reduced from 13 ìm to 50 nm. The strain hardening was related to the twinning induced hardening and dislocation hardening effect, while the strain softening was attributed to the localized deformation in the nanocrystalline grains. The tension–compression yield asymmetry was noticed in the nanocrystalline region, demonstrating the twinning effect in the ultra-fine-grained and nanocrystalline region. The relationship k tensions < k compression failed in the nanocrystalline Mg alloys; this was attributed to the twofold effect of grain size on twinning. The nanocrystalline Mg alloys were found to exhibit increased strain rate sensitivity with decreasing grain size, with strain rate ranging from 0.0001/s to 0.01/s. Strain rate sensitivity of coarse-grained MA0 was increased by more than 10 times in MA40. The Hall-Petch relationship broke down at a critical grain size in the nanocrystalline region. The breakdown of the Hall-Petch relationship and the increased strain rate sensitivity were due to the localized dislocation activities (generalization and annihilation at grain boundaries) and the more significant contribution from grain boundary mediated mechanisms. In the micro-compression tests, the sample size effects on the mechanical behaviours were studied on MA0, MA20 and MA40 micro-pillars. In contrast to the bulk samples under compression, the stress-strain curves of MA0 and MA20 micro-pillars were characterized with a number of discrete strain burst events separated by nearly elastic strain segments. Unlike MA0 and MA20, the stress-strain curves of MA40 micro-pillars were smooth, without obvious strain bursts. The deformation mechanisms of the MA0 and MA20 micro-pillars under micro-compression tests were considered to be initially dominated by deformation twinning, followed by dislocation mechanisms. For MA40 pillars, the deformation mechanisms were believed to be localized dislocation activities and grain boundary related mechanisms. The strain hardening behaviours of the micro-pillars suggested that the grain boundaries in the nanocrystalline micro-pillars would reduce the source (nucleation sources for twins/dislocations) starvation hardening effect. The power law relationship of the yield strength on pillar dimensions in MA0, MA20 supported the fact that the twinning mechanism was correlated to the pre-existing defects, which can promote the nucleation of the twins. Then, we provided a latitudinal comparison of the results and conclusions derived from the different techniques used for testing the coarse-grained and nanocrystalline Mg alloy; this helps to better understand the deformation mechanisms of the Mg alloys as a whole. At the end, we summarized the thesis and highlighted the conclusions, contributions, innovations and outcomes of the research. Finally, it outlined recommendations for future work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various researchers have called for an 'opening up' of Luhmann's systems theory. We take this short paper as an occasion for a critical reflection on the necessity, existence and possibilities of such an opening. We start by pointing out the inherent openness of Luhmann's theory, and, based on this, discuss three kinds of openings: the international opening, the theoretical opening and the empirical opening. With regard to the latter, we distinguish three general options of using Luhmann's theory for empirical research. Copyright © 2007 SAGE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In ‘me as al, you as bobby, me as bobby, you as al’, appropriated footage is looped and supplemented with superimposed text, creating a scenario where Robert De Niro and Al Pacino endlessly stalk each other, with their readied-guns chased by hovering words. These titans of Hollywood screen acting represent opposing approaches to the construction of filmic identity, and as the text labels loosely adhere to one weapon and the next, the action on screen becomes an investigation of the subjective and objective potential within screen surrogate constructions of personalized identity. The work was included in the group show 'Vernacular Terrain' (curated by Lubi Thomas and Steven Danzig) for the Songzhuang Art Museum, Beijing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The design of artificial intelligence in computer games is an important component of a player's game play experience. As games are becoming more life-like and interactive, the need for more realistic game AI will increase. This is particularly the case with respect to AI that simulates how human players act, behave and make decisions. The purpose of this research is to establish a model of player-like behavior that may be effectively used to inform the design of artificial intelligence to more accurately mimic a player's decision making process. The research uses a qualitative analysis of player opinions and reactions while playing a first person shooter video game, with recordings of their in game actions, speech and facial characteristics. The initial studies provide player data that has been used to design a model of how a player behaves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is a methodologically exemplary trial of a population based (universal) approach to preventing depression in young people. The programme used teachers in a classroom setting to deliver cognitive behavioural problem solving skills to a cohort of students. We have little knowledge about “best practice” to prevent depression in adolescence. Classroom-based universal approaches appear to offer advantages in recruitment rates and lack of stigmatisation over approaches that target specific groups of at risk students. Earlier research on a universal school-based approach to preventing depression in adolescents showed promise, but employed mental health professionals to teach cognitive behavioural coping skills in small groups.1 Using such an approach routinely would be economically unsustainable. Spence’s trial, with teachers as facilitators, therefore represents a “real world” intervention that could be routinely disseminated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The two minerals borickyite and delvauxite CaFe3+4(PO4,SO4)2(OH)8•4-6H2O have the same formula. Are the minerals identical or different? The minerals borickyite and delvauxite have been characterised by Raman spectroscopy. The minerals are related to the minerals diadochite and destinezite. Both minerals are amorphous. Delvauxite appears to vary in crystallinity from amorphous to semi-crystalline. The minerals are often X-ray non-diffracting. The minerals are found in soils and may be described as ‘colloidal’ minerals. Vibrational spectroscopy enables an assessment of the molecular structure of borickyite and delvauxite. Bands are assigned to phosphate and sulphate stretching and bending modes. Multiple water bending and stretching modes imply that non-equivalent water molecules in the structure exist with different hydrogen bond strengths. The two minerals show differing spectra and must be considered as different minerals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vibrational spectroscopy has been used to characterise the mineral creaseyite Cu2Pb2(Fe,Al)2(Si5O17)·6H2O. The mineral is found in the oxidised zone of base metal deposits and interestingly is associated with copper silicate minerals including ajoite, kinoite, chrysocolla as well as wulfenite, willemite, mimetite and wickenburgite. Creaseyite is a mineral with zeolitic properties. A Raman band at 998 cm−1 is assigned to the SiO stretching vibration of SiO3 units. The Raman band at 1071 cm−1 is assigned to the SiO stretching vibrations of the Si2O5 units. Raman bands are found at 2750, 2902, 3162, 3470 and 3525 cm−1. The band at 3525 cm−1 is attributed to zeolitic water. Other bands are assigned to water coordinated to the metal cations. Vibrational spectroscopy enables aspects of the molecular structure of creaseyite to be determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Webb et al. (2009) described a late Pleistocenecoral sample wherein the diagenetic stabilization of original coral aragonite to meteoric calcite was halted more or less mid-way through the process, allowing direct comparison of pre-diagenetic and post-diagenetic microstructure and trace element distributions. Those authors found that the rare earth elements (REEs) were relatively stable during meteoric diagenesis, unlike divalent cations such as Sr,and it was thus concluded that original, in this case marine, REE distributions potentially could be preserved through the meteoric carbonate stabilization process that must have affected many, if not most, ancient limestones. Although this was not the case in the analysed sample, they noted that where such diagenesis took place in laterally transported groundwater, trace elements derived from that groundwater could be incorporated into diagenetic calcite, thus altering the initial REE distribution (Banner et al., 1988). Hence, the paper was concerned with the diagenetic behaviour of REEs in a groundwater-dominated karst system. The comment offered by Johannesson (2011) does not question those research results, but rather, seeks to clarify an interpretation made by Webb et al. (2009) of an earlier paper, Johannesson et al. (2006).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently the use of the carbon fibre reinforced polymer(CFRP) composites appears to be an excellent solution for retrofitting and strengthening of concrete and steel structures because of its superior physical and mechanical properties through the integration of other materials. However, the overall functionality and durability under various environmental conditions of the system has not yet been well documented. This paper reviews the environmental durability of CFRP strengthened system that has received only small coverage in previous review articles. Future research topics have also been indentified, such as durability of steel circular hollow section under various environmental conditions subjected to bending. Environment of interests are moisture/solution, alkalinity, creep/relaxation, fatigue, fire, thermal effects (including freeze-thaw), and ultraviolet exposure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selected chrysocolla mineral samples from different origins have been studied by using PXRD, SEM, EDX and XPS. The XRD patterns show that the chrysocolla mineral samples are non-diffracting and no other phases are present in the minerals, thus showing the chrysocolla samples are pure. SEM analyses show the chrysocolla surfaces are featureless. EDX analyses enable the formulae of the chrysocolla samples to be calculated. The thermal decomposition of the mineral chrysocolla has been studied using a combination of thermogravimetric analysis and derivative thermogravimetric analysis. Five thermal decomposition mass loss steps are observed for the chrysocolla from Arizona (a) at 125 ◦C with the loss of water, (b) at 340 ◦C with the loss of hydroxyl units, (c) at 468.5 ◦C with a further loss of hydroxyls, (d) at 821 ◦C with oxygen loss and (e) at 895 ◦C with a further loss of oxygen. The thermal analysis of the chrysocolla from Congo shows mass losses at 125, 275.3, 805.6 and 877.4 ◦C and for the Nevada chrysocolla, mass loss steps at 268, 333, 463, 786.0 and 817.7 ◦C are observed. The thermal analysis of spertiniite is very different from that of chrysocolla and thermally decomposes at around 160 ◦C. XPS shows that there are two different copper species present, one which is bonded to oxygen and one to a hydroxyl unit. The O 1s is broad and very symmetrical suggesting two O species of equal number. The bond energy of 102.9 eV for the Si 2p suggests that it is in the form of a silicate. The bond energy is much higher for silicas around ∼103.5 eV. The reported value for silica gel has Si 2p at 103.4 eV. The combination of TG, PXRD, EDX and XPS adds to our fundamental knowledge of the structure of chrysocolla.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Goethite and Al-substituted goethite were synthesized from the reaction between ferric nitrate and/or aluminum nitrate and potassium hydroxide. XRF, XRD, TEM with EDS were used to characterize the chemical composition, phase and lattice parameters, and morphology of the synthesized products. The results show that d(020) decreases from 4.953 to 4.949 Å and the b dimension decreases from 9.951 Å to 9.906 Å when the aging time increases from 6 days to 42 days for 9.09 mol% Al-substituted goethite. A sample with 9.09 mol% Al substitution in Al-substituted goethite was prepared by a rapid co-precipitation method. In the sample, 13.45 mol%, 12.31 mol% and 5.85 mol% Al substitution with a crystal size of 163, 131, and 45 nm are observed as shown in the TEM images and EDS. The crystal size of goethite is positively related to the degree of Al substitution according to the TEM images and EDS results. Thus, this methodology is proved to be effective to distinguish the morphology of goethite and Al substituted goethite.