914 resultados para Community composition


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nanoscale zerovalent iron (nZVI) has potential for the remediation of organochlorine-contaminated environments. Environmental safety concerns associated with in situ deployment of nZVI include potential negative impacts on indigenous microbes whose biodegradative functions could contribute to contaminant remediation. With respect to a two-step polychlorinated biphenyl remediation scenario comprising nZVI dechlorination followed by aerobic biodegradation, we examined the effect of polyacrylic acid (PAA)-coated nZVI (mean diameter = 12.5 nm) applied at 10 g nZVI kg−1 to Aroclor-1242 contaminated and uncontaminated soil over 28 days. nZVI had a limited effect on Aroclor congener profiles, but, either directly or indirectly via changes to soil physico-chemical conditions (pH, Eh), nZVI addition caused perturbation to soil bacterial community composition, and reduced the activity of chloroaromatic mineralizing microorganisms. We conclude that nZVI addition has the potential to inhibit microbial functions that could be important for PCB remediation strategies combining nZVI treatment and biodegradation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Retreating ice fronts (as a result of a warming climate) expose large expanses of deglaciated forefield, which become colonized by microbes and plants. There has been increasing interest in characterizing the biogeochemical development of these ecosystems using a chronosequence approach. Prior to the establishment of plants, microbes use autochthonously produced and allochthonously delivered nutrients for growth. The microbial community composition is largely made up of heterotrophic microbes (both bacteria and fungi), autotrophic microbes and nitrogen-fixing diazotrophs. Microbial activity is thought to be responsible for the initial build-up of labile nutrient pools, facilitating the growth of higher order plant life in developed soils. However, it is unclear to what extent these ecosystems rely on external sources of nutrients such as ancient carbon pools and periodic nitrogen deposition. Furthermore, the seasonal variation of chronosequence dynamics and the effect of winter are largely unexplored. Modelling this ecosystem will provide a quantitative evaluation of the key processes and could guide the focus of future research. Year-round datasets combined with novel metagenomic techniques will help answer some of the pressing questions in this relatively new but rapidly expanding field, which is of growing interest in the context of future large-scale ice retreat.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Endophytic insects and their parasitoids provide valuable models for community ecology. The wasp communities in inflorescences of fig trees have great potential for comparative studies, but we must first describe individual communities. Here, we add to the few detailed studies of such communities by describing the one associated with Ficus rubiginosa in Australia. First, we describe community composition, using two different sampling procedures. Overall, we identified 14 species of non-pollinating fig wasp (NPFW) that fall into two size classes. Small wasps, including pollinators, gallers and their parasitoids, were more abundant than large wasps (both galler and parasitoid species). We show that in figs where wasps emerge naturally, the presence of large wasps may partly explain the low emergence of small wasps. During fig development, large gallers oviposit first, before and around the time of pollination, while parasitoids lay eggs after pollination. We further show that parasitoids in the subfamily Sycoryctinae, which comprise the majority of all individual NPFWs, segregate temporally by laying eggs at different stages of fig development. We discuss our results in terms of species co-existence and community structure and compare our findings to those from fig wasp communities on other continents.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We examined the relationships between topography, soil properties and tree species composition in a Neotropical swamp forest in southeastern Brazil. Plots were sampled in the forest, encompassing three different soil ground water regimes along the topographical declivity. All non-climbing plant individuals with trunk height >1.3 m were sampled. A canonical correspondence analysis-CCA-of the species-environmental relationships grouped tree species according to drainage and chemical soil conditions. A total of 86 species were found, being 77 species in the inferior, 40 species in the intermediate and 35 species in the superior topographic section. Some species were among the 10 most abundant ones, both in the overall sampled area and in each topographical section, with alternation events occurring only with their abundance position. However, substantial differences in floristic composition between sections were detected in a fine spatial scale, due to higher number of species, diversity index (H′) and species unique (exclusives) in the inferior topographic section. These higher values can be attributed to its higher spatial heterogeneity that included better drained and seasonally waterlogged soils, higher soil fertility and lower acidity. The increase of the soil water saturation and the uniform conditions derived from the superficial water layer has led to a lower number of species and an increase on the palm trees abundance in the intermediate and superior sections. Our results showed that at a small spatial scale niche differentiation must be an important factor related to the increase of the local diversity. The wide distribution of the most abundant species in the studied area and the increase of local diversity corroborate the pattern of distribution of species in larger scales of swamp forests, in which the most abundant species repeat themselves in high densities in different remnants. However, the floristic composition of each remnant is strongly variable, contributing to the increase of regional diversity. © 2008 Springer Science+Business Media B.V.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Environmental factors strongly affect mangrove crabs, and some factors modulate population structure and habitat partitioning during the crabs' life cycle. However, the effect of these environmental factors on habitat selection by mangrove crabs is still unknown. We evaluated habitat selection by the mangrove crab Ucides cordatus in mangrove forests with different degrees of predominance of Rhizophora mangle, Laguncularia racemosa or Avicennia schaueriana, two tidal flooding levels (less- and more-flooded), and two biological periods (breeding and non-breeding seasons). Sampling was conducted in four mangrove forests with different influences of these biotic and abiotic parameters. We used the data for sex ratio to explain environmental partitioning by this species. Females predominated in R. mangle mangroves, independently of the biological period (breeding or non-breeding seasons), and males predominated only in the less-flooded L. racemosa mangroves. The flooding level affected the sex ratio of U. cordatus, with a predominance of males in less-flooded mangroves, independently of the biological period; and a gender balance in the more-flooded mangroves only during the breeding season. Outside the breeding season, the largest specimens were recorded in the R. mangle mangroves, but in the breeding season, the largest crabs were recorded in the L. racemosa mangroves with a higher level of flooding. These results suggest that tree-species composition and tidal flooding level can have a significant effect on the habitat partitioning of sexes and sizes of the mangrove crab U. cordatus both during and outside the breeding season. © 2012 Springer-Verlag and AWI.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Communities in fragmented landscapes are often assumed to be structured by species extinction due to habitat loss, which has led to extensive use of the species-area relationship (SAR) in fragmentation studies. However, the use of the SAR presupposes that habitat loss leads species to extinction but does not allow for extinction to be offset by colonization of disturbed-habitat specialists. Moreover, the use of SAR assumes that species richness is a good proxy of community changes in fragmented landscapes. Here, we assessed how communities dwelling in fragmented landscapes are influenced by habitat loss at multiple scales; then we estimated the ability of models ruled by SAR and by species turnover in successfully predicting changes in community composition, and asked whether species richness is indeed an informative community metric. To address these issues, we used a data set consisting of 140 bird species sampled in 65 patches, from six landscapes with different proportions of forest cover in the Atlantic Forest of Brazil. We compared empirical patterns against simulations of over 8 million communities structured by different magnitudes of the power-law SAR and with species-specific rules to assign species to sites. Empirical results showed that, while bird community composition was strongly influenced by habitat loss at the patch and landscape scale, species richness remained largely unaffected. Modeling results revealed that the compositional changes observed in the Atlantic Forest bird metacommunity were only matched by models with either unrealistic magnitudes of the SAR or by models ruled by species turnover, akin to what would be observed along natural gradients. We show that, in the presence of such compositional turnover, species richness is poorly correlated with species extinction, and z values of the SAR strongly underestimate the effects of habitat loss. We suggest that the observed compositional changes are driven by each species reaching its individual extinction threshold: either a threshold of forest cover for species that disappear with habitat loss, or of matrix cover for species that benefit from habitat loss.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Terrestrial amphibians may dehydrate when exposed to low humidity, representing an important factor affecting spatial distribution and community composition. In this study we investigated whether rates of dehydration and rehydration are able to explain the spatial distribution of an anuran community in a Restinga environment at the northern coast of the State of Bahia, Brazil, represented by 11 species distributed in 27 sample units. The environmental data set containing 20 variables was reduced to a few synthetic axes by principal component analysis (PCA). Physiological variables measured were rates of dehydration, rehydration from water, and rehydration from a neutral substrate. Multiple regression analyses were used to test the null hypothesis of no association between the environmental data set (synthetic axes of PCA) and each axis representative of a physiological variable, which was rejected (P < 0.001). Of 15 possible partial regressions only rehydration rate from neutral substrate vs. PC1. and PC2, rehydration rate from water vs. PC1, and dehydration rate vs. PC2 were significant. Our analysis was influenced by a gradient between two different groups of sample units: a beach area with high density of bromeliads and an environment without bodies of water with low density of bromeliads. Species of very specific natural history and morphological characters occur in these environments: Phyllodytes melanomystax and Scinax auratus, species frequently occurring in terrestrial bromeliads, and Ischnocnema paulodutrai, common along the northern coast of Bahia and usually found in forest remnants within environments with low number of bodies of water. In dry environments species with lower rates of dehydration were dominant, whereas species showing greater rates of dehydration were found predominantly in microhabitats with greater moisture or abundance of bodies of water.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

[EN] To investigate the effects of mesoscale eddies on prokaryotic assemblage structure and activity, we sampled two cyclonic eddies (CEs) and two anticyclonic eddies (AEs) in the permanent eddy-field downstream the Canary Islands. The eddy stations were compared with two far-field (FF) stations located also in the Canary Current, but outside the influence of the eddy field. The distribution of prokaryotic abundance (PA), bulk prokaryotic heterotrophic activity (PHA), various indicators of single-cell activity (such as nucleic acid content, proportion of live cells, and fraction of cells actively incorporating leucine), as well as bacterial and archaeal community structure were determined from the surface to 2000m depth. In the upper epipelagic layer (0?200 m), the effect of eddies on the prokaryotic community was more apparent, as indicated by the higher PA, PHA, fraction of living cells, and percentage of active cells incorporating leucine within eddies than at FF stations. Prokaryotic community composition differed also between eddy and FF stations in the epipelagic layer. In the mesopelagic layer (200?1000 m), there were also significant differences in PA and PHA between eddy and FF stations, although in general, there were no clear differences in community composition or single-cell activity. The effects on prokaryotic activity and community structure were stronger in AE than CE, decreasing with depth in both types of eddies. Overall, both types of eddies show distinct community compositions (as compared with FF in the epipelagic), and represent oceanic ?hotspots? of prokaryotic activity (in the epi- and mesopelagic realms).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cyanobacteria are photosynthetic organisms that require the absorption of light for the completion of photosynthesis. Cyanobacteria can use a variety of wavelengths of light within thevisible light spectrum in order to harvest energy for this process. Many species of cyanobacteria have light-harvesting proteins that specialize in the absorption of a small range of wavelengths oflight along the visual light spectrum; others can undergo complementary chromatic adaptation and alter these light-harvesting proteins in order to absorb the wavelengths of light that are mostavailable in a given environment. This variation in light-harvesting phenotype across cyanobacteria leads to the utilization of environmental niches based on light wavelength availability. Furthermore, light attenuation along the water column in an aquatic system also leads to the formation of environmental niches throughout the vertical water column. In order to better understand these niches based on light wavelength availability, we studied the compositionof cyanobacterial genera at the surface and depth of Lake Chillisquaque at three time points throughout the year: September 2009, May 2010, and July 2010. We found that cyanobacterialgenera composition changes throughout the year as well as with physical location in the water column. Additionally, given the light attenuation noted throughout the Lake Chillisquaque, we are able to conclude that light is a major selective factor in the community composition of Lake Chillisquaque.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Throughout the Upper Great Lakes region, alterations to historic disturbance regimes have influenced plant community dynamics in hemlock-hardwood forests. Several important mesic forest species, eastern hemlock (Tsuga canadensis), yellow birch (Betula alleghaniensis), eastern white pine (Pinus strobus), and Canada yew (Taxus canadensis), are in decline due to exploitive logging practices used at the turn of the 20th century and the wave of intense fires that followed. Continued regeneration and recruitment failure is attributed to contemporary forest management practices and overbrowsing by white-tailed deer (Odocoileus virginianus). Therefore, I examined the influence of two concurrent disturbances, overstory removal and herbivory, on plant community dynamics in two hemlock-hardwood forests. I measured the post-disturbance regeneration response (herbaceous and woody species) inside and outside of deer exclosures in 20 artificial canopy gaps (50 – 450 m2) and monitored survival and growth for hundreds of planted seedlings. The results of this research show that interacting disturbances can play a large role in shaping plant community composition and structure in hemlock-hardwood forests. White-tailed deer herbivory homogenized the post-disturbance plant communities across the experimental gradient of gap areas, essentially making species compositions in small gaps “look like” those in large gaps. Deer browsing also influenced probability of survival for planted Canada yew cuttings; all else being equal an individual was nearly seven times more likely to survive if protected from herbivory (P < 0.001). In contrast, the ability of sugar maple (Acer saccharum) to persist under high levels of herbivory and respond rapidly to overstory release appears to be related to the presence of stem layering(i.e., portions of below-ground prostrate stem). Layering occurred in 52% of excavated saplings (n = 100) and was significantly associated with increased post-disturbance height growth. Understory light was also important to planted seedling establishment and height growth. Higher levels of direct under-canopy light negatively impacted survival for shade-tolerant hemlock and Canada yew, while an increase in diffuse light was linked to a higher probability of survival for yellow birch and height growth for hemlock and Canada yew. Increases in white pine height growth were also significantly associated with a decrease in canopy cover.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Semi-natural grasslands, biodiversity hotspots in Central-Europe, suffer from the cessation of traditional land-use. Amount and intensity of these changes challenge current monitoring frameworks typically based on classic indicators such as selected target species or diversity indices. Indicators based on plant functional traits provide an interesting extension since they reflect ecological strategies at individual and ecological processes at community levels. They typically show convergent responses to gradients of land-use intensity over scales and regions, are more directly related to environmental drivers than diversity components themselves and enable detecting directional changes in whole community dynamics. However, probably due to their labor- and cost intensive assessment in the field, they have been rarely applied as indicators so far. Here we suggest overcoming these limitations by calculating indicators with plant traits derived from online accessible databases. Aiming to provide a minimal trait set to monitor effects of land-use intensification on plant diversity we investigated relationships between 12 community mean traits, 2 diversity indices and 6 predictors of land-use intensity within grassland communities of 3 different regions in Germany (part of the German ‘Biodiversity Exploratory’ research network). By standardization of traits and diversity measures, use of null models and linear mixed models we confirmed (i) strong links between functional community composition and plant diversity, (ii) that traits are closely related to land-use intensity, and (iii) that functional indicators are equally, or even more sensitive to land-use intensity than traditional diversity indices. The deduced trait set consisted of 5 traits, i.e., specific leaf area (SLA), leaf dry matter content (LDMC), seed release height, leaf distribution, and onset of flowering. These database derived traits enable the early detection of changes in community structure indicative for future diversity loss. As an addition to current monitoring measures they allow to better link environmental drivers to processes controlling community dynamics.