111 resultados para Cilia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polyglycylation, a posttranslational modification of tubulin, was discovered in the highly stable axonemal microtubules of Paramecium cilia where it involves the lateral linkage of up to 34 glycine units per tubulin subunit. The observation of this type of posttranslational modification mainly in axonemes raises the question as to its relationship with axonemal organization and with microtubule stability. This led us to investigate the glycylation status of cytoplasmic microtubules that correspond to the dynamic microtubules in Paramecium. Two anti-glycylated tubulin monoclonal antibodies (mAbs), TAP 952 and AXO 49, are shown here to exhibit different affinities toward mono- and polyglycylated synthetic tubulin peptides. Using immunoblotting and mass spectrometry, we show that cytoplasmic tubulin is glycylated. In contrast to the highly glycylated axonemal tubulin, which is recognized by the two mAbs, cytoplasmic tubulin reacts exclusively with TAP 952, and the α- and β- tubulin subunits are modified by only 1–5 and 2–9 glycine units, respectively. Our analyses suggest that most of the cytoplasmic tubulin contains side chain lengths of 1 or 2 glycine units distributed on several glycylation sites. The subcellular partition of distinct polyglycylated tubulin isoforms between cytoplasmic and axonemal compartments implies the existence of regulatory mechanisms for glycylation. By following axonemal tubulin immunoreactivity with anti-glycylated tubulin mAbs upon incubation with a Paramecium cellular extract, the presence of a deglycylation enzyme is revealed in the cytoplasm of this organism. These observations establish that polyglycylation is reversible and indicate that, in vivo, an equilibrium between glycylating and deglycylating enzymes might be responsible for the length of the oligoglycine side chains of tubulin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When ciliogenesis first occurs in sea urchin embryos, the major building block proteins, tubulin and dynein, exist in substantial pools, but most 9+2 architectural proteins must be synthesized de novo. Pulse-chase labeling with [3H]leucine demonstrates that these proteins are coordinately up-regulated in response to deciliation so that regeneration ensues and the tubulin and dynein pools are replenished. Protein labeling and incorporation into already-assembled cilia is high, indicating constitutive ciliary gene expression and steady-state turnover. To determine whether either the synthesis of tubulin or the size of its available pool is coupled to the synthesis or turnover of the other 9+2 proteins in some feedback manner, fully-ciliated mid- or late-gastrula stage Strongylocentrotus droebachiensis embryos were pulse labeled in the presence of colchicine or taxol at concentrations that block ciliary growth. As a consequence of tubulin autoregulation mediated by increased free tubulin, no labeling of ciliary tubulin occurred in colchicine-treated embryos. However, most other proteins were labeled and incorporated into steady-state cilia at near-control levels in the presence of colchicine or taxol. With taxol, tubulin was labeled as well. An axoneme-associated 78 kDa cognate of the molecular chaperone HSP70 correlated with length during regeneration; neither colchicine nor taxol influenced the association of this protein in steady-state cilia. These data indicate that 1) ciliary protein synthesis and turnover is independent of tubulin synthesis or tubulin pool size; 2) steady-state incorporation of labeled proteins cannot be due to formation or elongation of cilia; 3) substantial tubulin exchange takes place in fully-motile cilia; and 4) chaperone presence and association in steady-state cilia is independent of background ciliogenesis, tubulin synthesis, and tubulin assembly state.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kinesin molecular motor proteins are responsible for many of the major microtubule-dependent transport pathways in neuronal and non-neuronal cells. Elucidating the transport pathways mediated by kinesins, the identity of the cargoes moved, and the nature of the proteins that link kinesin motors to cargoes are areas of intense investigation. Kinesin-II recently was found to be required for transport in motile and nonmotile cilia and flagella where it is essential for proper left-right determination in mammalian development, sensory function in ciliated neurons, and opsin transport and viability in photoreceptors. Thus, these pathways and proteins may be prominent contributors to several human diseases including ciliary dyskinesias, situs inversus, and retinitis pigmentosa. Kinesin-I is needed to move many different types of cargoes in neuronal axons. Two candidates for receptor proteins that attach kinesin-I to vesicular cargoes were recently found. One candidate, sunday driver, is proposed to both link kinesin-I to an unknown vesicular cargo and to bind and organize the mitogen-activated protein kinase components of a c-Jun N-terminal kinase signaling module. A second candidate, amyloid precursor protein, is proposed to link kinesin-I to a different, also unknown, class of axonal vesicles. The finding of a possible functional interaction between kinesin-I and amyloid precursor protein may implicate kinesin-I based transport in the development of Alzheimer's disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We used the common fish pathogen Ichthyophthirius multifiliis as a model for studying interactions between parasitic ciliates and their vertebrate hosts. Although highly pathogenic, Ichthyophthirius can elicit a strong protective immune response in fish after exposure to controlled infections. To investigate the mechanisms underlying host resistance, a series of passive immunization experiments were carried out using mouse monoclonal antibodies against a class of surface membrane proteins, known as immobilization antigens (or i-antigens), thought to play a role in the protective response. Such antibodies bind to cilia and immobilize I. multifiliis in vitro. Surprisingly, we found that passive antibody transfer in vivo caused rapid exit of parasites from the host. The effect was highly specific for a given I. multifiliis serotype. F(ab)2 subfragments had the same effect as intact antibody, whereas monovalent Fab fragments failed to protect. The activity of Fab could, nevertheless, be restored after subsequent i.p. injection of bivalent goat anti-mouse IgG. Parasites that exit the host had detectable antibody on their surface and appeared viable in all respects. These findings represent a novel instance among protists in which protective immunity (and evasion of the host response) result from an effect of antibody on parasite behavior.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Os ratos Wistar são amplamente empregados como modelo animal na pesquisa biomédica e o controle sanitário dos biotérios é essencial para garantir a qualidade dos experimentos. O objetivo do estudo foi a caracterização do estado sanitário da colônia de ratos Wistar em sistema de criação convencional e para tanto determinar as bactérias, fungos, virus e parasitos, bem como caracterizar as lesões anatomopatológicas do sistema respiratório. Foram utilizados 273 ratos (N), machos (M) e fêmeas (F), das faixas etárias 4, 8, 12, 16 a 20 semanas e entre 12 a 18 meses, para as determinações de peso e condição corpórea (N=273, 140M, 133F); avaliação bacteriológica de orofaringe, mucosa intestinal e lavado traqueobrônquico (N=40, 20M, 20F); determinação de anticorpos para vírus e bactérias (N=20, 10M, 10F); exame parasitológico (N=60, 30M, 30F); identificação molecular de Mycoplasma pulmonis em amostras de pulmão (N=25, 15M, 10F), e caracterização anatomopatológica da cavidade nasal, orofaringe, laringe, traqueia e pulmão (N=106, 53M, 53F). Foram realizadas ainda avaliações microbiológicas das salas dos ratos em três períodos com isolamento de Micrococcus spp., Staphylococcus spp., Bacillus spp., Aspergillus spp. e Penicillium spp. O peso se mostrou homogêneo dentro da faixa etária e gênero, com apenas sete animais magros (2,56%) e nove em sobrepeso (3,30%). Não foram isoladas bactérias patogênicas na orofaringe, mucosa intestinal e lavado traqueobrônquico por cultivo. Mycoplasma pulmonis foi determinado em 72% das amostras pulmonares e em 100% dos soros testados. Em 35% foram detectados anticorpos para Reovirus tipo III e em 100% para bacilos associados ao epitélio respiratório ciliado. Syphacia muris foi diagnosticada em 91,67%, Eimeria spp. em 3,33% e Entamoeba muris em 1,67%. Lesões relacionadas a infecção por agentes exógenos foram observadas em cavidade nasal e na orofaringe, laringe e traqueia a partir da 4 semanas de idade e, em pulmão desde as 12 semanas, com aumento de frequência de ocorrência e do grau de progressão, com o avançar da idade, nos vários segmentos estudados. Concluímos que a caracterização do estado sanitário dos ratos permite conhecer as particularidades do modelo biológico utilizado e compor base de dados para auxiliar no desenho e na interpretação experimental dos pesquisadores, além de garantir uma base para o programa de monitorização sanitária de biotérios em condições similares

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O transporte mucociliar (TMC) é um mecanismo básico de defesa do sistema respiratório necessário na resistência à infecção. A efetividade desse mecanismo de defesa depende da composição e profundidade do muco, da integridade e da função dos cílios e da interação muco-cílio. O objetivo deste estudo foi investigar os efeitos crônicos do oxigenoterapia de baixo fluxo via cateter nasal com e sem umidificação sobre o TMC nasal, nas propriedades físicas do muco, na inflamação e nos sintomas de vias aéreas em pacientes com hipoxemia crônica com necessidade de oxigenoterapia domiciliar de longo prazo (>15 horas/dia). Dezoito pacientes (idade média de 68 anos, 7 do sexo masculino, índice de massa corpórea (IMC) médio de 26 kg/m2, 66% com doença pulmonar obstrutiva crônica (DPOC), 60% com hipertensão arterial (HAS) e ex-tabagistas) iniciando oxigenoterapia de baixo fluxo via cateter nasal foram randomizados para o grupo Oxigênio Seco (n=10) ou Oxigênio Umidificado (n=9). Os pacientes foram avaliados nos tempos: basal, 12 horas, 7 dias, 30 dias, 12 meses e 24 meses para o TMC nasal por meio do teste de trânsito da sacarina, as propriedades físicas do muco por meio de ângulo de contato, a inflamação por meio de quantificação do número total de células e diferenciais e da concentração de citocinas no lavado nasal assim como para sintomas por meio do questionário SNOT-20. O sintoma mais importante relatado por pacientes no basal foi tosse que melhorou após 7 dias de oxigenoterapia. No nosso estudo, os pacientes de ambos grupos apresentaram prolongamento significativo (40%) do TMC nasal ao longo do estudo. O lavado nasal mostrou um aumento das proporções de neutrófilos, das células caliciformes e da concentração do fator de crescimento epidermal (EGF) assim como reduções em macrófagos e concentrações de interferon alfa (IFN-alfa), interleucina (IL)-8 e IL-10 ao longo do estudo. Não houve alterações na proporção de células ciliadas, na concentração de IL-6 e no ângulo de contato do muco em ambos os grupos. A tosse e os sintomas de sono diminuiram significativamente em ambos os grupos. Nosso estudo sugere que a umidificação não tem impacto sobre o TMC nasal, as propriedades do muco, a inflamação e os sintomas em pacientes com baixo fluxo de oxigênio via cateter nasal (BFON)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fruit fly, Drosophila melanogaster, is one of the most extensively studied organisms in biological research and has centrioles/basal bodies and cilia that can be modelled to investigate their functions in animals generally. Centrioles are nine-fold symmetrical microtubule-based cylindrical structures required to form centrosomes and also to nucleate the formation of cilia and flagella. When they function to template cilia, centrioles transition into basal bodies. The fruit fly has various types of basal bodies and cilia, which are needed for sensory neuron and sperm function. Genetics, cell biology and behaviour studies in the fruit fly have unveiled new basal body components and revealed different modes of assembly and functions of basal bodies that are conserved in many other organisms, including human, green algae and plasmodium. Here we describe the various basal bodies of Drosophila, what is known about their composition, structure and function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study investigates decision making in mental health care. Specifically, it compares the diagnostic decision outcomes (i.e., the qualityof diagnoses) and the diagnostic decision process (i.e., pre-decisional information acquisition patterns) of novice and experienced clinicalpsychologists. Participants’ eye movements were recorded while they completed diagnostic tasks, classifying mental disorders. In line withprevious research, our findings indicate that diagnosticians’ performance is not related to their clinical experience. Eye-tracking data pro-vide corroborative evidence for this result from the process perspective: experience does not predict changes in cue inspection patterns. Forfuture research into expertise in this domain, it is advisable to track individual differences between clinicians rather than study differenceson the group level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The monogeneans Decacotyle lymmae and D. tetrakordyle (Monocotylidae: Decacotylinae), from gills of the dasyatid stingrays Taeniura lymma and Pastinachus sephen, respectively, have a single aperture for adhesive secretion on each side of the anterior ventrolateral region. Rod-shaped bodies (S1) and electron-dense spherical secretion (S2) exit through specialised ducts opening adjacent to one another within these apertures. The S1 bodies are 230 +/- 11 nm wide and greater than or equal to4 mum long in D. lymmae and 240 +/- 9 nm wide and greater than or equal to3.3 mum long in D. tetrakordyle. The S2 bodies have a diameter of 88 +/- 7 nm in D. lymmae and 65 +/- 6 nm in D. tetrakordyle. The apertures are unusual in being extremely small (internal diameter, 3-5 mum). Each aperture has a slit-like surface opening as small as 160 nm wide, surrounded by muscle fibres indicating that they may be opened and closed. The aperture is also surrounded and underlain by muscle fibres that may aid in secretion from, or even eversion of, the tissue within the aperture. Sensilla/cilia are also found within the apertures. Additional secretions from anteromedian and anterolateral glands (body glands), each containing granular secretions, occur in profusion and exit anteriorly and posteriorly to the position of the apertures, through duct openings in the general body tegument. These granular secretions do not appear to be associated with anterior adhesion. Both species show similarities in aperture, underlying tissue, sense organ, and secretion detail, in accordance with findings from other monogenean genera, and which supports the importance of such data for phylogenetic studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The 21-day experimental gingivitis model, an established noninvasive model of inflammation in response to increasing bacterial accumulation in humans, is designed to enable the study of both the induction and resolution of inflammation. Here, we have analyzed gingival crevicular fluid, an oral fluid comprising a serum transudate and tissue exudates, by LC-MS/MS using Fourier transform ion cyclotron resonance mass spectrometry and iTRAQ isobaric mass tags, to establish meta-proteomic profiles of inflammation-induced changes in proteins in healthy young volunteers. Across the course of experimentally induced gingivitis, we identified 16 bacterial and 186 human proteins. Although abundances of the bacterial proteins identified did not vary temporally, Fusobacterium outer membrane proteins were detected. Fusobacterium species have previously been associated with periodontal health or disease. The human proteins identified spanned a wide range of compartments (both extracellular and intracellular) and functions, including serum proteins, proteins displaying antibacterial properties, and proteins with functions associated with cellular transcription, DNA binding, the cytoskeleton, cell adhesion, and cilia. PolySNAP3 clustering software was used in a multilayered analytical approach. Clusters of proteins that associated with changes to the clinical parameters included neuronal and synapse associated proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Improvements in genomic technology, both in the increased speed and reduced cost of sequencing, have expanded the appreciation of the abundance of human genetic variation. However the sheer amount of variation, as well as the varying type and genomic content of variation, poses a challenge in understanding the clinical consequence of a single mutation. This work uses several methodologies to interpret the observed variation in the human genome, and presents novel strategies for the prediction of allele pathogenicity.

Using the zebrafish model system as an in vivo assay of allele function, we identified a novel driver of Bardet-Biedl Syndrome (BBS) in CEP76. A combination of targeted sequencing of 785 cilia-associated genes in a cohort of BBS patients and subsequent in vivo functional assays recapitulating the human phenotype gave strong evidence for the role of CEP76 mutations in the pathology of an affected family. This portion of the work demonstrated the necessity of functional testing in validating disease-associated mutations, and added to the catalogue of known BBS disease genes.

Further study into the role of copy-number variations (CNVs) in a cohort of BBS patients showed the significant contribution of CNVs to disease pathology. Using high-density array comparative genomic hybridization (aCGH) we were able to identify pathogenic CNVs as small as several hundred bp. Dissection of constituent gene and in vivo experiments investigating epistatic interactions between affected genes allowed for an appreciation of several paradigms by which CNVs can contribute to disease. This study revealed that the contribution of CNVs to disease in BBS patients is much higher than previously expected, and demonstrated the necessity of consideration of CNV contribution in future (and retrospective) investigations of human genetic disease.

Finally, we used a combination of comparative genomics and in vivo complementation assays to identify second-site compensatory modification of pathogenic alleles. These pathogenic alleles, which are found compensated in other species (termed compensated pathogenic deviations [CPDs]), represent a significant fraction (from 3 – 10%) of human disease-associated alleles. In silico pathogenicity prediction algorithms, a valuable method of allele prioritization, often misrepresent these alleles as benign, leading to omission of possibly informative variants in studies of human genetic disease. We created a mathematical model that was able to predict CPDs and putative compensatory sites, and functionally showed in vivo that second-site mutation can mitigate the pathogenicity of disease alleles. Additionally, we made publically available an in silico module for the prediction of CPDs and modifier sites.

These studies have advanced the ability to interpret the pathogenicity of multiple types of human variation, as well as made available tools for others to do so as well.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rab GTPases are the largest family of the Ras superfamily and are key regulators of membrane trafficking within the cell. There are over 60 members of the Rab family which localise to specific membrane compartments and interact with effector proteins to regulate membrane trafficking processes, such as vesicle formation, vesicle trafficking within the cell and fusion with an acceptor compartment. Multiple effector proteins have been identified for many Rabs, some of which can interact with more than one Rab to link their function at a specific membrane location or to link them together in a Rab activation cascade. Rabin8 is one such protein which is an effector for Rab11a and a Guanine nucleotide Exchange Factor (GEF) for Rab8a. Rabin8 participates in a conserved Rab activation cascade which is critical in the formation of primary cilia. Data presented in this thesis has shown that GRAB interacts with Rab3a, Rab8a, Rab11a and Rab11b in a nucleotide dependent manner. Furthermore, the minimal interacting regionbetween these proteins has been investigated. The functional outcome of GRAB knockdown has also been examined and data in this thesis highlights the phenotypic outcome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[EN]Hypertension and depression are both important risk factors for cardiovascular diseases. Nevertheless, the association of blood pressure on and depression has not been completely established. This study aims to analyze whether depression may influence the control of blood pressure in hypertensive individuals at high cardiovascular risk

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[EN]Whilst it is well known that psychosocial determinants may contribute to cardiovascular diseases (CVD), data from specific groups are scarce. The present study aims to determine the contribution of psychosocial determinants in increasing the risk of cardiovascular events (myocardial infarction and stroke), and death from CVD, in a high risk adult population

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The Nme gene family is involved in multiple physiological and pathological processes such as cellular differentiation, development, metastatic dissemination, and cilia functions. Despite the known importance of Nme genes and their use as clinical markers of tumor aggressiveness, the associated cellular mechanisms remain poorly understood. Over the last 20 years, several non-vertebrate model species have been used to investigate Nme functions. However, the evolutionary history of the family remains poorly understood outside the vertebrate lineage. The aim of the study was thus to elucidate the evolutionary history of the Nme gene family in Metazoans. Methodology/Principal Findings: Using a total of 21 eukaryote species including 14 metazoans, the evolutionary history of Nme genes was reconstructed in the metazoan lineage. We demonstrated that the complexity of the Nme gene family, initially thought to be restricted to chordates, was also shared by the metazoan ancestor. We also provide evidence suggesting that the complexity of the family is mainly a eukaryotic innovation, with the exception of Nme8 that is likely to be a choanoflagellate/metazoan innovation. Highly conserved gene structure, genomic linkage, and protein domains were identified among metazoans, some features being also conserved in eukaryotes. When considering the entire Nme family, the starlet sea anemone is the studied metazoan species exhibiting the most conserved gene and protein sequence features with humans. In addition, we were able to show that most of the proteins known to interact with human NME proteins were also found in starlet sea anemone. Conclusion/Significance: Together, our observations further support the association of Nme genes with key cellular functions that have been conserved throughout metazoan evolution. Future investigations of evolutionarily conserved Nme gene functions using the starlet sea anemone could shed new light on a wide variety of key developmental and cellular processes.