916 resultados para Chlorotetracycline, Eosin Y, Bovine serum albumin, MCR-ALS, Fluorescence polarization
Resumo:
Human serum albumin (HSA) was successfully bonded to silica with s-triazine as activator. The coupling reaction by this method was rapid and effective. The triazine-activated silica is relatively stable and can be installed for at least 1 month without obvious loss of reactivity when stored below 30 degreesC, pH below 7. It was observed that the amount of bound HSA reached 120 mg/g silica calculated from the UV absorbance difference of the HSA solution. d,l-tryptophan was selected as the probe solute to characterize the properties of HSA bonded s-triazine chiral stationary phase, and separation factor of 9.4 was obtained for d,l-tryptophan. Furthermore, the amount of effective HSA on silica was measured by high-performance frontal analysis, and only 16.8 mg/g silica was responsible for the resolution of d,l-tryptophan. These results indicate that the amount of both the bound and effective HSA on silica with triazine as activator was much higher than those by the Schiff base coupling method. Different kinds of enantiomers were resolved successfully on the aminopropylsilica-bonded HSA s-triazine chiral stationary phase. (C) 2000 Wiley-Liss, Inc.
Resumo:
The affinity and specificity of drugs with human serum albumin (HSA) are crucial factors influencing the bioactivity of drugs. To gain insight into the carrier function of HSA, the binding of levamlodipine with HSA has been investigated as a model system by a combined experimental and theoretical/computational approach. The fluorescence properties of HSA and the binding parameters of levamlodipine indicate that the binding is characterized by one binding site with static quenching mechanism, which is related to the energy transfer. As indicated by the thermodynamic analysis, hydrophobic interaction is the predominant force in levamiodipine-HSA complex, which is in agreement with the computational results. And the hydrogen bonds can be confirmed by computational approach between levamlodipine and HSA. Compared to predicted binding energies and binding energy spectra at seven sites on HSA, levamlodipine binding HSA at site I has a high affinity regime and the highest specificity characterized by the largest intrinsic specificity ratio (ISR). The binding characteristics at site I guarantee that drugs can be carried and released from HSA to carry out their specific bioactivity.
Resumo:
The conformational changes of bovine serum albumin (BSA) in the albumin:gold nanoparticle bioconjugates were investigated in detail by various spectroscopic techniques including UV-vis absorption, fluorescence, circular dichroism, and Fourier transform infrared spectroscopies. Our studies suggested that albumin in the bioconjugates that was prepared by the common adsorption method underwent substantial conformational changes at both secondary and tertiary structure levels. BSA was found to adopt a more flexible conformational state on the boundary surface of gold nanoparticles as a result of the conformational changes in the bioconjugates. The conformational changes at pH 3.8, 7.0, and 9.0, which corresponded to different isomeric forms of albumin, were investigated, respectively, to probe the pH effect on the conformational changes of BSA in the bioconjugates. The results showed that the pH of the medium influenced the changes greatly and that fluorescence and circular dichroism studies further indicated that the changes were larger at higher pH.
Resumo:
A new technique for investigating drug-protein binding was developed employing capillary electrophoresis (CE) coupled with tris(2,2'-bipyridyl) ruthenium(II) [Ru(bPY)(3)(2+)] electrochemiluminescence (ECL) (CE-ECL) detection after equilibrium dialysis. Three basic drugs, namely pridinol, procyclidine and its analogue trihexyphenidyl, were successfully separated by capillary zone electrophoresis with end-column Ru(bPY)(3)(2+) ECL detection. The relative drug binding to human serum albumin (HSA) for each single drug as well'as for the three drugs binding simultaneously was calculated. It was found that the three antiparkinsonian drugs compete for the same binding site on HSA. This work demonstrated that Ru(bPY)(3)(2+) CE-ECL can be a suitable technique for studying drug-protein binding.
Resumo:
The biosensor based on surface plasmon resonance(SPR) technology is a very useful tool to study the interaction between biomolecles. The main advantages of this technique is to "visualize" macromolecular interactions directly in real time, and in a label-free mode rather than indirect methods like enzyme-linked immunosorbent assays (ELISAs). We immobilize human serum albumin (HSA) to the carboxymethyldextran-modified sensor chip surface covalently to detect the activity of anti-HSA in serum, and regenerate the surface with .1 mol/L phosphoric acid. The results show that SPR biosensor can detect the activity of anti-HSA in real-time quickly and the sensor chip can be used over 100 cycles.
Resumo:
The water relaxation enhancement behavior of GdDTPA in human serum albumin (HSA) solution has been studied. The results indicate that GdDTPA can integrate noncovalently with HSA, mainly in forms of (GdDTPA)HSA and (GdDTPA),HSA, for which the apparent equilibrium constants are 0.05 mM(-1) and 0.02 mM(-2), respectively. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
Stable gadolinium complexes, such as Gd(DTPA) and Gd(DOTA), are usually used as the contrast agents for magnetic resonance imaging(MRI). Reported here are the enhanced relaxation properties of a novel gadolinium complex, diethylene-triaminopentaacetate Lis (isoniazid) [Gd(DTPA-BIN)], in aqueous and in human serum albumin(HSA) solution, which indicates that (1) two Gd(DTPA-BIN) can integrate non-covalently with one HSA with an equilibrium constant of 0. 02 mmol(-2) . L-2 ; (2) the relaxivities are 3. 28 and 4. 92 mmol(-1) . L . s(-1) for the free Gd(DTPA-BIN) and the [Gd(DTPA-BIN)](2), HSA conjugator, respectively; (3) the rotational correlation time of protein conjugator is notably higher than that of the free complex, The above results may imply that Gd(DTPA-BIN) has a higher tissue selectivity than that of its parent Gd(DTPA).
Removal of endotoxin from human serum albumin solutions by hydrophobic and cationic charged membrane
Resumo:
A novel matrix of macropore cellulose membrane was prepared by chemical graft, and immobilized the cationic charged groups as affinity ligands. The prepared membrane Fan be used for the removal of endotoxin from human serum albumin (HSA) solutions. With a cartridge of 20 sheets affinity membrane of 47 mm diameter, the endotoxin level in HSA solution can be reduced ro 0.027 eu/mL. Recovery of HSA was over 95%.
Resumo:
A method for the screening and analysis of biologically active compounds in traditional Chinese medicine is proposed. Affinity chromatography using a human serum albumin (HSA) stationary phase was applied to separate and analyze the bioactive compounds from Artemisia capillaris Thunb. Five major peaks and several minor peaks were resolved based on their affinity to HSA, two of them were identified as scoparone (SCO, 6,7-dimethoxycoumarin) and capillarisin (CAP). CAP shows a much higher affinity to HSA than SCO. The effects of acetonitrile concentration, eluent pH, phosphate concentration and temperature on the retention behaviors of several major active components were also investigated, and it was found that hydrophobicity and eluent pH play major roles in changing retention values. The results demonstrate that the affinity chromatography with a HSA stationary phase is an effective way for analyzing and screening biologically active compounds in traditional Chinese medicine. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The applicability of capillary electrophoresis/frontal analysis (CE/FA) for determining the binding constants of the drugs propranolol (PRO) and verapamil (VER) to human serum albumin (HSA) was investigated. After direct hydrodynamic injection of a drug-HAS mixture solution into a coated capillary (32 cm x 50 mu m i.d.), the basic drug was eluted as a zonal peak with a plateau region under condition of phosphate buffer (pH 7.4; ionic strength 0.17) at 12 kV positive running voltage. The unbound drug concentrations measured from the plateau peak heights had good correlation coefficients, r > 0.999. Employing the Scatchard plot, the Klotz plot and nonlinear regression, the drug protein binding parameters, the binding constant and the number of binding sites on one protein molecule, were obtained. The binding constant obtained was compared to a reported equilibrium dialysis result and they are basically in good agreement.