954 resultados para Chemical characterization
Resumo:
170 p.
Resumo:
New bone chars for fluoride adsorption from drinking water have been synthetized via metallic doping using aluminum and iron salts. A detailed statistical analysis of the metal doping process using the signal-to-noise ratios from Taguchi's experimental designs and its impact on the fluoride adsorption properties of modified bone chars have been performed. The best conditions, including the proper metallic salt, for metal doping were identified to improve the fluoride uptakes of modified bone chars. Results showed that the fluoride adsorption properties of bone chars can be enhanced up to 600% using aluminum sulfate for the surface modification. This aluminum-based adsorbent showed an adsorption capacity of 31 mg/g, which outperformed the fluoride uptakes reported for several adsorbents. Surface interactions involved in the defluoridation process were established using FTIR, DRX and XPS analysis. Defluoridation using the metal-doped bone chars occurred via an ion exchange process between fluoride ions and the hydroxyl groups on the adsorbent surface, whereas the Al(OH)xFy, FexFy, and CaF2 interactions could play also an important role in the removal process. These metal-doped adsorbents anticipate a promising behavior in water treatment, especially in developing countries where the efficiency – cost tradeoff is crucial for implementing new defluoridation technologies.
Resumo:
Spectral identification of individual micro- and nano-sized particles by the sequential intervention of optical catapulting, optical trapping and laser-induced breakdown spectroscopy is presented [1]. The three techniques are used for different purposes. Optical catapulting (OC) serves to put the particulate material under inspection in aerosol form [2-4]. Optical trapping (OT) permits the isolation and manipulation of individual particles from the aerosol, which are subsequently analyzed by laser-induced breakdown spectroscopy (LIBS). Once catapulted, the dynamics of particle trapping depends on the laser beam characteristics (power and intensity gradient) and on the particle properties (size, mass and shape). Particles are stably trapped in air at atmospheric pressure and can be conveniently manipulated for a precise positioning for LIBS analysis. The spectra acquired from the individually trapped particles permit a straightforward identification of the inspected material. The current work focuses on the development of a procedure for simultaneously acquiring dual information about the particle under study via LIBS and time-resolved plasma images by taking advantage of the aforementioned features of the OC-OT-LIBS instrument to align the multiple lines in a simple yet highly accurate way. The plasma imaging does not only further reinforce the spectral data, but also allows a better comprehension of the chemical and physical processes involved during laser-particle interaction. Also, a thorough determination of the optimal excitation conditions generating the most information out of each laser event was run along the determination of parameters such as the width of the optical trap, its stability as a function of the laser power and the laser wavelength. The extreme sensibility of the presented OC-OT-LIBS technology allows a detection power of attograms for single/individual particle analysis.
Resumo:
Gunshot residue (GSR) is the term used to describe the particles originating from different parts of the firearm and ammunition during the discharge. A fast and practical field tool to detect the presence of GSR can assist law enforcement in the accurate identification of subjects. A novel field sampling device is presented for the first time for the fast detection and quantitation of volatile organic compounds (VOCs). The capillary microextraction of volatiles (CMV) is a headspace sampling technique that provides fast results (< 2 min. sampling time) and is reported as a versatile and high-efficiency sampling tool. The CMV device can be coupled to a Gas Chromatography-Mass Spectrometry (GC-MS) instrument by installation of a thermal separation probe in the injection port of the GC. An analytical method using the CMV device was developed for the detection of 17 compounds commonly found in polluted environments. The acceptability of the CMV as a field sampling method for the detection of VOCs is demonstrated by following the criteria established by the Environmental Protection Agency (EPA) compendium method TO-17. The CMV device was used, for the first time, for the detection of VOCs on swabs from the hands of shooters, and non-shooters and spent cartridges from different types of ammunition (i.e., pistol, rifle, and shotgun). The proposed method consists in the headspace extraction of VOCs in smokeless powders present in the propellant of ammunition. The sensitivity of this method was demonstrated with method detection limits (MDLs) 4-26 ng for diphenylamine (DPA), nitroglycerine (NG), 2,4-dinitrotoluene (2,4-DNT), and ethyl centralite (EC). In addition, a fast method was developed for the detection of the inorganic components (i.e., Ba, Pb, and Sb) characteristic of GSR presence by Laser Induced Breakdown Spectroscopy (LIBS). Advantages of LIBS include fast analysis (~ 12 seconds per sample) and good sensitivity, with expected MDLs in the range of 0.1-20 ng for target elements. Statistical analysis of the results using both techniques was performed to determine any correlation between the variables analyzed. This work demonstrates that the information collected from the analysis of organic components has the potential to improve the detection of GSR.
Resumo:
The present work was done on two ambrotypes and two tintypes. It aimed evaluate their chemical and physical characteristics, especially their degradation patterns. Moreover, to understand the materials used for their production and cross-check analytical and historical information about the production processes. To do so multi-analytical, non-destructive methods were applied. Technical photography highlighted the surface morphology of the objects and showed the distribution of the protective coatings on their surfaces through UV radiation, which were very different between the four pieces. OM allowed for a detailed observation of the surfaces along with the selection of areas of interest to be analysed with SEM-EDS. SEM-EDS was the technique used most extensively and the one that provided the most insightful results: it allowed to observe the morphology of the image forming particles and the differences between highlights, dark areas and the interfaces between them. Also, elemental point analysis and elemental maps were used to identify the image forming particles as silver and to detect the presence of compounds related to the production, particularly gold used to highlight jewellery, iron as the red pigment and traces of the compounds used in the photographic process containing Ag, I, Na and S . Also, some degradation compounds were analysed containing Ag, Cu, S and Cl. With μ-FT-IR the presence of collodion was confirmed and the source of the protective varnishes was identified, particularly mastic and shellac, in either mixtures of the two or only one. μ-Raman detected the presence of metallic silver and silver chloride on the objects and identified one of the red pigments as Mars red. Finally, μ-XRD showed the presence of metallic silver and silver iodide on both ambrotypes and tintypes and hematite, magnetite and wuestite on the tintypes; RESUMO: O presente estudo foi desenvolvido sobre dois ambrótipos e dois ferrótipos. O propósito consiste em estudar as suas características químicas e físicas, dando particular ênfase aos padrões de degradação. Também é pretendido compreender os materiais usados na sua produção e relacionar esta informação analítca com dados históricos de manuais técnicos contemporâneos à produção dos objectos. Para tal foram utilizadas técnicas multi-analíticas e não destrutivas. O uso da fotografia técnica permitiu uma observação da morfologia das superficies dos objectos e da distribuição das camadas de verniz através da radiação UV, muito diferente entre os quatro. A microscopia óptica proporcionou uma observação detalhada das superfícies assim como a selecção de pontos de interesse para serem analisados com SEM-EDS. SEM-EDS foi a técnica usada mais extensivamente e a que proporcionou os resultados mais detalhados: observação da morofologia das partículas formadoras da imagem e as diferenças entre zonas de altas luzes, baixas luzes e as interfaces entre elas. A análise elemental e os mapas elementares foram usados para detectar prata nas partículas formadoras da imagem e a presença de compostos relacionados com a produção, em particular ouro utilizado para realçar joalharia, ferro no pigmento vermelho e vestígios de compostos utilizados no processo fotográfico incluindo Ag, I, Na e S. Do mesmo modo, alguns compostos de degradação foram analisados contendo Ag, Cu, S e Cl. Com μ-FT-IR a presença de colódio foi confirmada e identificada a origem dos vernizes, mástique e goma-laca, tanto em misturas dos dois como apenas um. Com μ-Raman foi detectada a presença de prata metálica e de cloreto de prata e identificado um dos pigmentos vermelhos como Mars red. Finalmente, μ-DRX revelou a presença de prata metálica e iodeto de prata tanto nos ambrótipos como nos ferrótipos e hematite, magnetite e wuestite nos ferrótipos.
Resumo:
A cultura da banana tem baixa diversidade genética, tornando a espécie susceptível a doenças dizimadoras como a Sigatoka negra. No entanto, a adoção de novas variedades necessita de avaliações agronômicas e físico-químicas. Neste estudo, as variedades de banana, resistentes à Sigatoka negra, foram caracterizadas e comparadas com a variedade tradicional (Grand Naine). Cada variedade foi avaliada considerando-se critérios relevantes para a agroindústria, como pH, sólidos solúveis totais, acidez total titulável, relação SST/ATT, açúcares totais, açúcares redutores e não redutores, umidade, sólidos totais e rendimento no processamento. A variedade Thap Maeo apresentou-se como a variedade mais potencial para substituição da Gran Naine na indústria, com altos teores de sólidos solúveis totais, açúcares redutores, açúcares totais e umidade. As variedades Caipira e FHIA 2 também podem substituir a Grand Naine. Na análise de agrupamentos, verificou-se que a variedade Grand Naine esteve muito próxima das variedades do subgrupo Gros Michel (Bucaneiro, Ambroisa e Calipso) e também da variedade Caipira, apresentando no seu genoma o grupo AAA. Conclui-se que há opções de variedades resistentes para substituição da variedade tradicional, nas regiões afetadas pela Sigatoka-negra.
Resumo:
Construction and demolition waste (CDW) represents around 31% of all waste produced in the European Union. It is today acknowledged that the consumption of raw materials in the construction industry is a non-sustainable activity. It is thus necessary to reduce this consumption, and the volume of CDW dumped, by using this waste as a source of raw materials for the production of recycled aggregates. One potential use of these aggregates is their incorporation in reinforced concrete as a replacement of natural aggregates. A concrete that incorporates these aggregates and still performs well requires them to be fully characterized so that their behaviour within the concrete can be predicted. Coarse recycled aggregates have been studied quite thoroughly, because they are simpler to reintroduce in the market as a by-product, and so has the performance of concrete made with them. This paper describes the main results of research designed to characterize the physical and chemical properties of fine recycled aggregates for concrete production and their relationship with mineralogical composition and preprocessing. The constraints of the incorporation of fine aggregates in reinforced concrete are discussed. It is shown that, unless a developed processing diagram is used, this application is not feasible. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Purpose: To investigate the efficiency of silver nanoparticles synthesized by wet chemical method, and evaluate their antibacterial and anti-cancer activities. Methods: Wet chemical method was used to synthesize silver nanoparticles (AgNPs) from silver nitrate, trisodium citrate dehydrate (C6H5O7Na3.2H2O) and sodium borohydride (NaBH4) as reducing agent. The AgNPs and the reaction process were characterized by UV–visible spectrometry, zetasizer, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS). The antibacterial and cytotoxic effects of the synthesized nanoparticles were investigated by agar diffusion method and MTT assay respectively. Results: The silver nanoparticles formed were spherical in shape with mean size of 10.3 nm. The results showed good antibacterial properties, killing both Gram-positive and Gram-negative bacteria, and its aqueous suspension displayed cytotoxic activity against colon adenocarcinoma (HCT-116) cell line. Conclusion: The findings indicate that silver nanoparticles synthesized by wet chemical method demonstrate good cytotoxic activity in colon adenocarcinoma (HCT-116) cell lines and strong antibacterial activity against various strains of bacteria.
Resumo:
Many Bacillus species can produce biosurfactant, although most of the studies on lipopeptide production by this genus have been focused on Bacillus subtilis. Surfactants are broadly used in pharmaceutical, food and petroleum industry, and biological surfactant shows some advantages over the chemical surfactants, such as less toxicity, production from renewable, cheaper feedstocks and development of novel recombinant hyperproducer strains. This study is aimed to unveil the biosurfactant metabolic pathway and chemical composition in Bacillus safensis strain CCMA-560. The whole genome of the CCMA-560 strain was previously sequenced, and with the aid of bioinformatics tools, its biosurfactant metabolic pathway was compared to other pathways of closely related species. Fourier transform infrared (FTIR) and high-resolution TOF mass spectrometry (MS) were used to characterize the biosurfactant molecule. B. safensis CCMA-560 metabolic pathway is similar to other Bacillus species; however, some differences in amino acid incorporation were observed, and chemical analyses corroborated the genetic results. The strain CCMA-560 harbours two genes flanked by srfAC and srfAD not present in other Bacillus spp., which can be involved in the production of the analogue gramicidin. FTIR and MS showed that B. safensis CCMA-560 produces a mixture of at least four lipopeptides with seven amino acids incorporated and a fatty acid chain with 14 carbons, which makes this molecule similar to the biosurfactant of Bacillus pumilus, namely, pumilacidin. This is the first report on the biosurfactant production by B. safensis, encompassing the investigation of the metabolic pathway and chemical characterization of the biosurfactant molecule.
Resumo:
Construction and Demolition Waste (CDW) represents. about 50% of the total Brazilian municipal solid waste: thus, recycling represents huge benefits both in environmental and economic perspectives. Herein, the chemical characterization results of three samples from two different recycling plants from the State of Sao Paulo is prevented. The results demonstrated that the visual classification into grey and red is not related to the chemical composition but mostly to the grain size fraction. The chemical composition of the CDW varies according to the content of cement paste, natural aggregates (quartz sand or granite), red ceramic and clay. Furthermore, the production of recycled concrete aggregates requires two crushing stages to meet the technical standards. The sand fraction (below 4.8 mm) presents high grades of SiO(2), which indicates the liberation of cement paste to fines (< 0.15 mm). The fines have a great potential to be used in the cement industry.
Resumo:
This study focuses on the technical feasibility of the utilization of waste from the cutting of granite to adjust the chemical composition of slag from steelworks LD, targeting the addition of clinker Portland cement. For this, chemical characterization of the waste, its mixture and fusion was performed, obtaining a CaO/SiO(2) relationship of around 0.9 to 1.2 for the steelworks slag. We selected samples of the waste, mixed, melted and cooled in water and in the oven. Samples cooled in water, after examining with X-ray difractrograms, had been predominantly amorphous. For samples cooled in the furnace, which had vitreous, there was the presence of mineralogical phases Akermanita and Gehlenita, which is considered as the ideal stage for the mineral water activity of the slag. The adjustment of the chemical composition of the slag from steel works by the addition of waste granite was efficient, transforming the waste into a product that is the same as blast furnace slag and can be used in the manufacture of cement.
Resumo:
The modern approach to the development of new chemical entities against complex diseases, especially the neglected endemic diseases such as tuberculosis and malaria, is based on the use of defined molecular targets. Among the advantages, this approach allows (i) the search and identification of lead compounds with defined molecular mechanisms against a defined target (e.g. enzymes from defined pathways), (ii) the analysis of a great number of compounds with a favorable cost/benefit ratio, (iii) the development even in the initial stages of compounds with selective toxicity (the fundamental principle of chemotherapy), (iv) the evaluation of plant extracts as well as of pure substances. The current use of such technology, unfortunately, is concentrated in developed countries, especially in the big pharma. This fact contributes in a significant way to hamper the development of innovative new compounds to treat neglected diseases. The large biodiversity within the territory of Brazil puts the country in a strategic position to develop the rational and sustained exploration of new metabolites of therapeutic value. The extension of the country covers a wide range of climates, soil types, and altitudes, providing a unique set of selective pressures for the adaptation of plant life in these scenarios. Chemical diversity is also driven by these forces, in an attempt to best fit the plant communities to the particular abiotic stresses, fauna, and microbes that co-exist with them. Certain areas of vegetation (Amazonian Forest, Atlantic Forest, Araucaria Forest, Cerrado-Brazilian Savanna, and Caatinga) are rich in species and types of environments to be used to search for natural compounds active against tuberculosis, malaria, and chronic-degenerative diseases. The present review describes some strategies to search for natural compounds, whose choice can be based on ethnobotanical and chemotaxonomical studies, and screen for their ability to bind to immobilized drug targets and to inhibit their activities. Molecular cloning, gene knockout, protein expression and purification, N-terminal sequencing, and mass spectrometry are the methods of choice to provide homogeneous drug targets for immobilization by optimized chemical reactions. Plant extract preparations, fractionation of promising plant extracts, propagation protocols and definition of in planta studies to maximize product yield of plant species producing active compounds have to be performed to provide a continuing supply of bioactive materials. Chemical characterization of natural compounds, determination of mode of action by kinetics and other spectroscopic methods (MS, X-ray, NMR), as well as in vitro and in vivo biological assays, chemical derivatization, and structure-activity relationships have to be carried out to provide a thorough knowledge on which to base the search for natural compounds or their derivatives with biological activity.
Resumo:
This paper explores analytically the contemporary pottery-making community of Pereruela (north-west Spain) that produces cooking pots from a mixture of red clay and kaolin. Analyses by different techniques (XRF, NAA, XRD, SEM and petrography) showed an extremely high variability for cooking ware pottery produced in a single production centre, by the same technology and using local clays. The main source of chemical variation is related to the use of different red clays and the presence of non-normally distributed inclusions of monazite. These two factors induce a high chemical variability, not only in the output of a single production centre, but even in the paste of a single pot, to an extent to which chemical compositions from one"workshop", or even one"pot", could be classified as having different provenances. The implications for the chemical characterization and for provenance studies of archaeological ceramics are addressed.
Resumo:
The objective of this work was to evaluate the influence of different combinations of grape cultivars and rootstocks on chemical characteristics of grape juices. Six treatments were evaluated, consisting of combinations between the Isabel Precoce and BRS Cora grape cultivars and the 'IAC 766', 'IAC 313', and 'IAC 572' rootstocks. Approximately 10 L of juice were obtained per treatment. Analyses of color, total soluble solids content, pH, anthocyanins, total phenolics, total sugars, and quantification and identification of biogenic amines by HPLC were performed. Biogenic amines, such as putrescine, cadaverine, spermidine, and spermine, were found in all evaluated cultivars. By principal component analysis (PCA), treatments can be divided into two groups, according to the cultivar. Juices obtained from 'Isabel Precoce' are characterized by higher levels of total sugar content and soluble solids; however, juices from 'BRS Cora' are positively correlated with phenolic content, anthocyanins, and color and acidity parameters. The differences found by PCA for juices from the Isabel Precoce and BRS Cora cultivars indicate that, regardless of the rootstock used, the most important factor in the chemical characterization of juices is the grape cultivar.