995 resultados para Chemical affinity


Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A methodology has been developed to measure the chemical constituents associated with the settling velocity fractions that comprise a wastewater settling velocity profile (SVP). 31 wastewater samples were collected from fifteen different catchments in England and Wales. For each catchment, settling velocity and associated chemical constituent profiles were determined. The results are mainly for Suspended Solids (SS), Chemical Oxygen Demand (COD), Phosphorus (P) and Total Kjeadahl Nitrogen (TKN), however these are supplemented by the results from 5 events for a suite of heavy metals. COD, P, Hg, Mn and Pb were found to be predominantly associated with the solid phase and TKN, Al, Cu and Fe with the liquor phase of the wastewater samples. The results in the thesis are expressed as mass of pollutant (g) per mass total SS (kg). COD and P were found to be mainly associated with the sinkers and had a particular affinity for solids with settling velocities in the range 0.9-9.03mm/sec. TKN was mainly associated with the soluble phase, however of the solids that did settle, a peak was found to be associated within the settling velocity range 0.9-9.03mm/sec. The relationships identified for COD and P were generally found to be unaffected by flow conditions and catchment characteristics. However, TKN was found to be affected by catchment type. Data on the distribution of heavy metals was limited, and no specific relationships with solids were identified. 16 mean pollutant profiles are presented in the thesis. Presentation of the data in this form will enable the results to be of use in the design of sedimentation devices to predict removal efficiencies for solids and associated pollutants. The findings of the research may also be applied to modelling tools to provide further characteristics on the solids that are modelled than is currently used. This would enhance the overall performance of tools used in integrated catchment modelling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The accurate identification of T-cell epitopes remains a principal goal of bioinformatics within immunology. As the immunogenicity of peptide epitopes is dependent on their binding to major histocompatibility complex (MHC) molecules, the prediction of binding affinity is a prerequisite to the reliable prediction of epitopes. The iterative self-consistent (ISC) partial-least-squares (PLS)-based additive method is a recently developed bioinformatic approach for predicting class II peptide−MHC binding affinity. The ISC−PLS method overcomes many of the conceptual difficulties inherent in the prediction of class II peptide−MHC affinity, such as the binding of a mixed population of peptide lengths due to the open-ended class II binding site. The method has applications in both the accurate prediction of class II epitopes and the manipulation of affinity for heteroclitic and competitor peptides. The method is applied here to six class II mouse alleles (I-Ab, I-Ad, I-Ak, I-As, I-Ed, and I-Ek) and included peptides up to 25 amino acids in length. A series of regression equations highlighting the quantitative contributions of individual amino acids at each peptide position was established. The initial model for each allele exhibited only moderate predictivity. Once the set of selected peptide subsequences had converged, the final models exhibited a satisfactory predictive power. Convergence was reached between the 4th and 17th iterations, and the leave-one-out cross-validation statistical terms - q2, SEP, and NC - ranged between 0.732 and 0.925, 0.418 and 0.816, and 1 and 6, respectively. The non-cross-validated statistical terms r2 and SEE ranged between 0.98 and 0.995 and 0.089 and 0.180, respectively. The peptides used in this study are available from the AntiJen database (http://www.jenner.ac.uk/AntiJen). The PLS method is available commercially in the SYBYL molecular modeling software package. The resulting models, which can be used for accurate T-cell epitope prediction, will be made freely available online (http://www.jenner.ac.uk/MHCPred).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The delicate balance between the production and disposal of proteins is vital for the changes required in the cell to respond to given stimulus. Ubiquitination is a protein modification with a range of signaling outcomes when ubiquitin is attached to a protein through a highly ordered enzymatic cascade process. Understanding ubiquitination is a growing field and nowadays the application of chemical reactions allows the isolation of quantitative materials for structural studies. Therefore, in this dissertation it is described some of these suitable chemical methodologies to produce an isopeptide bond toward the polymerization of ubiquitin bypassing the enzymatic control with the purpose of showing if these chemical modifications have a direct impact on the structure of ubiquitin. First, the possibility of incorporating non-natural lysine analogs known as mercaptolysines into the polypeptide chain of Ubiquitin was explored when they were attached to ubiquitin by native chemical ligation at its C terminus. The sulfhydryl group was used for the attachment of a paramagnetic label to map the surface of ubiquitin. Second, the condensation catalyzed by silver nitrate was used for the dimer assembly. In particular, the main focus was on examining whether orthogonal protection and deprotection of each monomer have an impact on the reaction yield, since the synthetic strategy has been previously attempted successfully. Third, the formation of ubiquitin dimers was approached by building an inter-ubiquitin linkage mimicking the isopeptide bond with two approaches, the classic disulfide exchange as well as the thiol-ene click reaction by thermal initiation in aqueous conditions. After assembling the dimeric units, they were studied by Nuclear Magnetic Resonance, in order to establish a conformational state profile which depends on the pH conditions. The latter is a very important concept since some ligands have a preferred affinity when the protein-protein hydrophobic patches are in close proximity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aptamers, also known as chemical antibodies, are single-stranded nucleic acid oligonucleotides which bind to their targets with high specificity and affinity. They are typically selected by repetitive in vitro process termed systematic evolution of ligands by exponential enrichment (SELEX). Owing to their excellent properties compared to conventional antibodies, notably their smaller physical size and lower immunogenicity and toxicity, aptamers have recently emerged as a new class of agents to deliver therapeutic drugs to cancer cells by targeting specific cancer-associated hallmarks. Aptamers can also be structurally modified to make them more flexible in order to conjugate other agents such as nano-materials and therapeutic RNA agents, thus extending their applications for cancer therapy. This review presents the current knowledge on the practical applications of aptamers in the treatment of a variety of cancers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The specific mechanisms by which selective pressures affect individuals are often difficult to resolve. In tephritid fruit flies, males respond strongly and positively to certain plant derived chemicals. Sexual selection by female choice has been hypothesized as the mechanism driving this behaviour in certain species, as females preferentially mate with males that have fed on these chemicals. This hypothesis is, to date, based on studies of only very few species and its generality is largely untested. We tested the hypothesis on different spatial scales (small cage and seminatural field-cage) using the monophagous fruit fly, Bactrocera cacuminata. This species is known to respond to methyl eugenol (ME), a chemical found in many plant species and one upon which previous studies have focused. Contrary to expectation, no obvious female choice was apparent in selecting ME-fed males over unfed males as measured by the number of matings achieved over time, copulation duration, or time of copulation initiation. However, the number of matings achieved by ME-fed males was significantly greater than unfed males 16 and 32 days after exposure to ME in small cages (but not in a field-cage). This delayed advantage suggests that ME may not influence the pheromone system of B. cacuminata but may have other consequences, acting on some other fitness consequence (e.g., enhancement of physiology or survival) of male exposure to these chemicals. We discuss the ecological and evolutionary implications of our findings to explore alternate hypotheses to explain the patterns of response of dacine fruit flies to specific plant-derived chemicals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To enhance and regulate cell affinity for poly (l-lactic acid) (PLLA) based materials, two hydrophilic ligands, poly (ethylene glycol) (PEG) and poly (l-lysine) (PLL), were used to develop triblock copolymers: methoxy-terminated poly (ethylene glycol)-block-poly (l-lactide)-block-poly (l-lysine) (MPEG-b-PLLA-b-PLL) in order to regulate protein absorption and cell adhesion. Bone marrow stromal cells (BMSCs) were cultured on different composition of MPEG-b-PLLA-b-PLL copolymer films to determine the effect of modified polymer surfaces on BMSC attachment. To understand the molecular mechanism governing the initial cell adhesion on difference polymer surfaces, the mRNA expression of 84 human extracellular matrix (ECM) and adhesion molecules was analysed using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). It was found that down regulation of adhesion molecules was responsible for the impaired BMSC attachment on PLLA surface. MPEG-b-PLLA-b-PLL copolymer films improved significantly the cell adhesion and cytoskeleton expression by upregulation of relevant molecule genes significantly. Six adhesion genes (CDH1, ITGL, NCAM1, SGCE, COL16A1, and LAMA3) were most significantly influenced by the modified PLLA surfaces. In summary, polymer surfaces altered adhesion molecule gene expression of BMSCs, which consequently regulated cell initial attachment on modified PLLA surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction of quercetin, which is a bioflavonoid, with bovine serum albumin (BSA) was investigated under pseudo-physiological conditions by the application of UV–vis spectrometry, spectrofluorimetry and cyclic voltammetry (CV). These studies indicated a cooperative interaction between the quercetin–BSA complex and warfarin, which produced a ternary complex, quercetin–BSA–warfarin. It was found that both quercetin and warfarin were located in site I. However, the spectra of these three components overlapped and the chemometrics method – multivariate curve resolution-alternating least squares (MCR-ALS) was applied to resolve the spectra. The resolved spectra of quercetin–BSA and warfarin agreed well with their measured spectra, and importantly, the spectrum of the quercetin–BSA–warfarin complex was extracted. These results allowed the rationalization of the behaviour of the overlapping spectra. At lower concentrations ([warfarin] < 1 × 10−5 mol L−1), most of the site marker reacted with the quercetin–BSA, but free warfarin was present at higher concentrations. Interestingly, the ratio between quercetin–BSA and warfarin was found to be 1:2, suggesting a quercetin–BSA–(warfarin)2 complex, and the estimated equilibrium constant was 1.4 × 1011 M−2. The results suggest that at low concentrations, warfarin binds at the high-affinity sites (HAS), while low-affinity binding sites (LAS) are occupied at higher concentrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, biometric and structural engineering tool have been used to examine a possible relationship within Chuaria–Tawuia complex and micro-FTIR (Fourier Transform Infrared Spectroscopy) analyses to understand the biological affinity of Chuaria circularis Walcott, collected from the Mesoproterozoic Suket Shales of the Vindhyan Supergroup and the Neoproterozoic Halkal Shales of the Bhima Group of peninsular India. Biometric analyses of well preserved carbonized specimens show wide variation in morphology and uni-modal distribution. We believe and demonstrate to a reasonable extent that C. circularis most likely was a part of Tawuia-like cylindrical body of algal origin. Specimens with notch/cleft and overlapping preservation, mostly recorded in the size range of 3–5 mm, are of special interest. Five different models proposed earlier on the life cycle of C. circularis are discussed. A new model, termed as ‘Hybrid model’ based on present multidisciplinary study assessing cylindrical and spherical shapes suggesting variable cell wall strength and algal affinity is proposed. This model discusses and demonstrates varied geometrical morphologies assumed by Chuaria and Tawuia, and also shows the inter-relationship of Chuaria–Tawuia complex. Structural engineering tool (thin walled pressure vessel theory) was applied to investigate the implications of possible geometrical shapes (sphere and cylinder), membrane (cell wall) stresses and ambient pressure environment on morphologically similar C. circularis and Tawuia. The results suggest that membrane stresses developed on the structures similar to Chuaria–Tawuia complex were directly proportional to radius and inversely proportional to the thickness in both cases. In case of hollow cylindrical structure, the membrane stresses in circumferential direction (hoop stress) are twice of the longitudinal direction indicating that rupture or fragmentation in the body of Tawuia would have occurred due to hoop stress. It appears that notches and discontinuities seen in some of the specimens of Chuaria may be related to rupture suggesting their possible location in 3D Chuaria. The micro-FTIR spectra of C. circularis are characterized by both aliphatic and aromatic absorption bands. The aliphaticity is indicated by prominent alkyl group bands between 2800–3000 and 1300–1500 cm−1. The prominent absorption signals at 700–900 cm−1 (peaking at 875 and 860 cm−1) are due to aromatic CH out of plane deformation. A narrow, strong band is centred at 1540 cm−1 which could be COOH band. The presence of strong aliphatic bands in FTIR spectra suggests that the biogeopolymer of C. circularis is of aliphatic nature. The wall chemistry indicates the presence of ‘algaenan’—a biopolymer of algae.