942 resultados para Cell robot - Automotive industry
Resumo:
National Highway Traffic Safety Administration, Office of Research and Development, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Office of Research and Development, Washington, D.C.
Resumo:
Purpose – The purpose of this paper is to investigate how research and development (R&D) collaboration takes place for complex new products in the automotive sector. The research aims to give guidelines to increase the effectiveness of such collaborations. Design/methodology/approach – The methodology used to investigate this issue was grounded theory. The empirical data were collected through a mixture of interviews and questionnaires. The resulting inducted conceptual models were subsequently validated in industrial workshops. Findings – The findings show that frontloading of the collaborative members was a major issue in managing successful R&D collaborations. Research limitations/implications – The limitation of this research is that it is only based in the German automotive industry. Practical implications – Practical implications have come out of this research. Models and guidelines are given to help make a success of collaborative projects and their potential impacts on time, cost and quality metrics. Originality/value – Frontloading is not often studied in a collaborative manner; it is normally studied within just one organisation. This study has novel value because it has involved a number of different members throughout the supplier network.
Resumo:
Firms acting as suppliers to the British automotive industry have a long history of so doing, with some evidencing histories that predate even the invention of the motor car. In exploring the challenges faced by the descendants of these firms in the 1990s, a review is undertaken of the bodies of literature surrounding the changes wrought through the increased globalisation of the industry; the impact of new manufacturing technologies and techniques; the rising levels of co-operation between firms; and the growing impact of the automotive 'service sector'. Moreover, an exploration is undertaken of the perceived 'realities' of the automotive industry as constructed through discourse, including the ways in which discourse effects a continual reinterpretation and re-evaluation of the historical evolution of the industry. Attention is focused on the implications of the above for the automotive supply chain, and the means for its rationalisation proposed by the major car manufacturers and their partner-suppliers. Post-structuralist approaches are introduced as part of an attempt to establish and appropriate research methodology that can explore and deconstruct the discourses surrounding 'modernity', 'supply chain rationalisation', 'flexible specialisation' and 'globalisation' within the automotive industry. Analytical research is conducted into the small- to medium-sized business that constitute the majority of the supplier base in the United Kingdom, and the findings of this research are compared with those of a similar study conducted a quarter-century ago. In this way, the relationships of these firms with their customers, suppliers, and peers are investigated, as are their perceptions of a changing marketplace and their reactions to the impact of policies such as the 'supply chain rationalisation' pursued by the major automotive manufacturers. Authoritative discourses of industry form, function, and structure are challenged, with voice being granted to the marginalised: small suppliers, 'service sector' firms, or those only partly involved in the automotive industry.
Resumo:
This research reports on the appropriate governance, i.e. design and management, of inter-firm R&D relationships in order to achieve sustainable competitive success for the whole partnership as well as its individual members. An exploratory study in the German automotive industry using inductive Grounded Theory was conducted. This involved data collection via 28 semi-structured interviews with 16 companies in order to form a set of 35 tentative propositions that have been validated via a questionnaire survey receiving 110 responses from 52 companies. The research has resulted in the consolidation of the validated propositions into a novel concept termed Collaborative Enterprise Governance. The core of the concept is a competence based contingency framework that helps decision makers in selecting the most appropriate governance strategy (i.e. sourcing strategy) for an inter-firm R&D relationship between a buyer and its supplier. Thereby, the concept does not draw on whole company-to-company connectivity. It rather conceptualises an inter-firm relationship to be composed of autonomous cross-functional units of the individual partner companies that contribute value to a particular joint R&D project via the possession of task specific competencies. The novel concept and its elements have been evaluated in a focus group with industrial experts of the German automotive industry and revealed positive effects on the sustainable competitive success of the whole partnership and the individual partner companies. However, it also showed that current practice does not apply the right mechanisms for its implementation and hence guidelines for practitioners and decision makers involved in inter-firm R&D collaboration in the automotive industry are offered on how to facilitate the implementation and usage of the Collaborative Enterprise Governance philosophy.
Resumo:
The automotive industry combines a multitude of professionals to develop a modern car successfully. Within the design and development teams the collaboration and interface between Engineers and Designers is critical to ensure design intent is communicated and maintained throughout the development process. This study highlights recent industry practice with the emergence of Concept Engineers in design teams at Jaguar Land Rover Automotive group. The role of the Concept Engineer emphasises the importance of the Engineering and Design/Styling interface with the Concept engineer able to interact and understand the challenges and specific languages of each specialist area, hence improving efficiency and communication within the design team. Automotive education tends to approach design from two distinct directions, that of engineering design through BSc courses or a more styling design approach through BA and BDes routes. The educational challenge for both types of course is to develop engineers and stylist's who have greater understanding and experience of each other's specialist perspective of design and development. The study gives examples of two such courses in the UK who are developing programmes to help students widen their understanding of the engineering and design spectrum. Initial results suggest the practical approach has been well received by students and encouraged by industry as they seek graduates with specialist knowledge but also a wider appreciation of their role within the design process.
Resumo:
Mass-production, cars, pollution – they all have long become well known and well connected phenomena of the modern life. Nowadays the people can also add to the list such items like awareness, scientific approach, long-term thinking, and environmental responsibility. They are surrounded by a multitude of consumer goods, most of which are produced in a scientific manner, and all of which will more sooner than later end up in the garbage. Cars are the most noticeable – both by size and by numbers – and also the most expensive of all the mass products in people’s view. For many of them they are a clear target for reprimand and regulation, and, as a result, the automotive industry is being increasingly brought under bureaucratic control, together with its whole supplier and distributor network. The author started writing this article in an attempt to place the above process under scrutiny, because it is his firm belief that similar measures, similar tough governmental control will inevitably spill over to other industries, which at the moment are producing more inconspicuous, but still polluting products. The present paper shows the relationship between car-making, supply chain management and the efforts of public administration to protect the environment – a connection with clear practical implications.
Resumo:
This report uses the Duke CGGC Global Value Chain (GVC) framework to examine the role of the Philippines in the global automotive industry and identify opportunities for upgrading. The country’s strength in the sector is in electrical and electronic automotive components, with approximately two-thirds of its US$3.98 billion exports in 2014 falling in one of these categories. The Philippines has a particularly strong foothold in wire harnesses, exports of which increased by 129% from 2007 to 2014 to allow it to become the world’s fourth largest global exporter. The prominence of the cluster affords the country a number of upgrading opportunities moving forward. Otherwise, the relatively small size of the domestic market has constrained the development of the industry, with local companies unable to generate the economies of scale necessary to compete in an increasingly consolidated global environment.
Resumo:
Current trends in the automotive industry have placed increased importance on engine downsizing for passenger vehicles. Engine downsizing often results in reduced power output and turbochargers have been relied upon to restore the power output and maintain drivability. As improved power output is required across a wide range of engine operating conditions, it is necessary for the turbocharger to operate effectively at both design and off-design conditions. One off-design condition of considerable importance for turbocharger turbines is low velocity ratio operation, which refers to the combination of high exhaust gas velocity and low turbine rotational speed. Conventional radial flow turbines are constrained to achieve peak efficiency at the relatively high velocity ratio of 0.7, due the requirement to maintain a zero inlet blade angle for structural reasons. Several methods exist to potentially shift turbine peak efficiency to lower velocity ratios. One method is to utilize a mixed flow turbine as an alternative to a radial flow turbine. In addition to radial and circumferential components, the flow entering a mixed flow turbine also has an axial component. This allows the flow to experience a non-zero inlet blade angle, potentially shifting peak efficiency to a lower velocity ratio when compared to an equivalent radial flow turbine.
This study examined the effects of varying the flow conditions at the inlet to a mixed flow turbine and evaluated the subsequent impact on performance. The primary parameters examined were average inlet flow angle, the spanwise distribution of flow angle across the inlet and inlet flow cone angle. The results have indicated that the inlet flow angle significantly influenced the degree of reaction across the rotor and the turbine efficiency. The rotor studied was a custom in-house design based on a state-of-the-art radial flow turbine design. A numerical approach was used as the basis for this investigation and the numerical model has been validated against experimental data obtained from the cold flow turbine test rig at Queen’s University Belfast. The results of the study have provided a useful insight into how the flow conditions at rotor inlet influence the performance of a mixed flow turbine.
Resumo:
Embedded software systems in vehicles are of rapidly increasing commercial importance for the automotive industry. Current systems employ a static run-time environment; due to the difficulty and cost involved in the development of dynamic systems in a high-integrity embedded control context. A dynamic system, referring to the system configuration, would greatly increase the flexibility of the offered functionality and enable customised software configuration for individual vehicles, adding customer value through plug-and-play capability, and increased quality due to its inherent ability to adjust to changes in hardware and software. We envisage an automotive system containing a variety of components, from a multitude of organizations, not necessarily known at development time. The system dynamically adapts its configuration to suit the run-time system constraints. This paper presents our vision for future automotive control systems that will be regarded in an EU research project, referred to as DySCAS (Dynamically Self-Configuring Automotive Systems). We propose a self-configuring vehicular control system architecture, with capabilities that include automatic discovery and inclusion of new devices, self-optimisation to best-use the processing, storage and communication resources available, self-diagnostics and ultimately self-healing. Such an architecture has benefits extending to reduced development and maintenance costs, improved passenger safety and comfort, and flexible owner customisation. Specifically, this paper addresses the following issues: The state of the art of embedded software systems in vehicles, emphasising the current limitations arising from fixed run-time configurations; and the benefits and challenges of dynamic configuration, giving rise to opportunities for self-healing, self-optimisation, and the automatic inclusion of users’ Consumer Electronic (CE) devices. Our proposal for a dynamically reconfigurable automotive software system platform is outlined and a typical use-case is presented as an example to exemplify the benefits of the envisioned dynamic capabilities.
Resumo:
The following thesis focused on the dry grinding process modelling and optimization for automotive gears production. A FEM model was implemented with the aim at predicting process temperatures and preventing grinding thermal defects on the material surface. In particular, the model was conceived to facilitate the choice of the grinding parameters during the design and the execution of the dry-hard finishing process developed and patented by the company Samputensili Machine Tools (EMAG Group) on automotive gears. The proposed model allows to analyse the influence of the technological parameters, comprising the grinding wheel specifications. Automotive gears finished by dry-hard finishing process are supposed to reach the same quality target of the gears finished through the conventional wet grinding process with the advantage of reducing production costs and environmental pollution. But, the grinding process allows very high values of specific pressure and heat absorbed by the material, therefore, removing the lubricant increases the risk of thermal defects occurrence. An incorrect design of the process parameters set could cause grinding burns, which affect the mechanical performance of the ground component inevitably. Therefore, a modelling phase of the process could allow to enhance the mechanical characteristics of the components and avoid waste during production. A hierarchical FEM model was implemented to predict dry grinding temperatures and was represented by the interconnection of a microscopic and a macroscopic approach. A microscopic single grain grinding model was linked to a macroscopic thermal model to predict the dry grinding process temperatures and so to forecast the thermal cycle effect caused by the process parameters and the grinding wheel specification choice. Good agreement between the model and the experiments was achieved making the dry-hard finishing an efficient and reliable technology to implement in the gears automotive industry.
Resumo:
This work presents a comparison between laser weld (LBW) and electric resistance spot weld (ERSW) processes used for assemblies of components in a body-in-white (BIW) at a world class automotive industry. It is carried out by evaluating the mechanical strength modeled both by experimental and numerical methods. An ""Arcan"" multiaxial test was designed and manufactured in order to enable 0 degrees, 45 degrees and 90 degrees directional loadings. The welded specimens were uncoated low carbon steel sheets (S-y = 170 MPa) used currently at the automotive industry, with two different thicknesses: 0.80 and 1.20 mm. A numerical analysis was carried out using the finite element method (FEM) through LS-DYNA code. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The increase of the women purchase power has led some companies to adopt strategies of products differentiation as well as to produce specific products to the female public. The auto industry is not immune to this phenomenon, once the women represent, approximately half of the automobile sales in the country. Considering the consumption and the behavior differences between women and men, it has set the following question: are there differences between the choices associated to the automobile by men and the choices associated to the automobile by women? It has been presented to the participants items found in the people`s day-by-day, which are valorized by them, and the participants have been asked to choose and associate these items to the automobile. The results analysis revealed there are more similarities than differences between choices associated to the automobile by men ad choices associated to the automobile by women. The similarity between the choices suggests that the representations, the meanings and values assigned. to the car by men ana women are similar and thus the strategy of product differentiation does not apply to the automotive industry
Resumo:
Objective: To document the relationship between physical activity, absenteeism, presenteeism, health care utilization, and morbidity among Brazilian automotive workers. Methods: Eligible employees (N = 620) completed a questionnaire. Univariate correlations, multivariate logistic regression, and Pearson`s product-moment correlation coefficient were used. Results: Work absenteeism was associated with physical activity at work (OPA) (odds ratio, [OR] = 1.63, 95% confidence interval [CI] = 1.31 to 2.02) and leisure physical activity time excluding sport (OR = 0.73, 95% CI = 0.58 to 1.00). Health care utilization was associated with OPA (OR = 1.25, 95% CI = 0.99 to 1.58) and leisure physical activity time excluding sport (OR = 0.76, 95% CI = 0.57 to 1.02). Presenteeism showed an indirect relationship with OPA (r = 0.099, P = 0.014). Referred morbidity was associated with OPA (OR = 1.3, 95% CI = 1.06 to 1.61) and sports during leisure time (OR = 0.67, 95% CI = 0.54 to 0.82). Conclusions: Physical activity components seem to have differential relationships to the studied outcomes. Associations measured indicate negative impacts of OPA on absenteeism, health care utilization, and morbidity, although overall physical activity did not show these relationships.
Resumo:
Forecasting category or industry sales is a vital component of a company's planning and control activities. Sales for most mature durable product categories are dominated by replacement purchases. Previous sales models which explicitly incorporate a component of sales due to replacement assume there is an age distribution for replacements of existing units which remains constant over time. However, there is evidence that changes in factors such as product reliability/durability, price, repair costs, scrapping values, styling and economic conditions will result in changes in the mean replacement age of units. This paper develops a model for such time-varying replacement behaviour and empirically tests it in the Australian automotive industry. Both longitudinal census data and the empirical analysis of the replacement sales model confirm that there has been a substantial increase in the average aggregate replacement age for motor vehicles over the past 20 years. Further, much of this variation could be explained by real price increases and a linear temporal trend. Consequently, the time-varying model significantly outperformed previous models both in terms of fitting and forecasting the sales data. Copyright (C) 2001 John Wiley & Sons, Ltd.