357 resultados para Catalisadores automotivos


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lubricants and cutting middle distillates typically have large amounts of n-paraffins to increase its freezing point and fluidity. Accordingly, the removal of n-paraffins of long chain lubricants oils and diesel is essential to get a product with good cold flow properties. The development of new catalysts, which exhibit thermal stability and catalytic activity for the hydroisomerization reaction is still a challenge. Thus, silicoaluminophosphates (SAPO) were synthesized by different routes. Have been used also post-synthesis treatment for obtaining hybrid structures and others synthesis have been carried out with mesoporous template (soft and hard-template). Therefore, SAPO have been impregnated with H2PtCl6 solution by the incipient wetness method. Then assessments of catalytic activities in hydroisomerization and hydrocracking reactions of hexadecane have been held. Besides SAPO, niobium phosphate - NbP - were also impregnated with platinum and evaluated in the same reaction. After impregnation, these catalysts have been characterized by X-ray diffraction (XRD), nitrogen adsorption, infrared spectroscopy with adsorbed pyridine (IV-PY), scanning electron microscopy (SEM) and resonance nuclear magnetic 29Si (29Si-NMR). The characterization results by XRD have shown that it has been possible to obtain mesoporous SAPOs. However, for the syntheses with soft template there was collapse of the structure after removal of the organic template. Even so, these catalysts have been actives. It was possible to obtain hybrid materials through the synthesis of SAPO-11 made with hard templates and by means of post-synthesis treatments samples of SAPO-11. Moreover, NbP has shown characteristic XRD of amorphous materials, with high acidity and were active in the conversion of hexadecane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lubricants and cutting middle distillates typically have large amounts of n-paraffins to increase its freezing point and fluidity. Accordingly, the removal of n-paraffins of long chain lubricants oils and diesel is essential to get a product with good cold flow properties. The development of new catalysts, which exhibit thermal stability and catalytic activity for the hydroisomerization reaction is still a challenge. Thus, silicoaluminophosphates (SAPO) were synthesized by different routes. Have been used also post-synthesis treatment for obtaining hybrid structures and others synthesis have been carried out with mesoporous template (soft and hard-template). Therefore, SAPO have been impregnated with H2PtCl6 solution by the incipient wetness method. Then assessments of catalytic activities in hydroisomerization and hydrocracking reactions of hexadecane have been held. Besides SAPO, niobium phosphate - NbP - were also impregnated with platinum and evaluated in the same reaction. After impregnation, these catalysts have been characterized by X-ray diffraction (XRD), nitrogen adsorption, infrared spectroscopy with adsorbed pyridine (IV-PY), scanning electron microscopy (SEM) and resonance nuclear magnetic 29Si (29Si-NMR). The characterization results by XRD have shown that it has been possible to obtain mesoporous SAPOs. However, for the syntheses with soft template there was collapse of the structure after removal of the organic template. Even so, these catalysts have been actives. It was possible to obtain hybrid materials through the synthesis of SAPO-11 made with hard templates and by means of post-synthesis treatments samples of SAPO-11. Moreover, NbP has shown characteristic XRD of amorphous materials, with high acidity and were active in the conversion of hexadecane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemical modification of polymer matrices is an alternative way to change its surface properties. The introduction of sulfonic acid groups in polymer matrices alter properties such as adhesion, wettability, biocampatibility, catalytic activity, among others. This paper describes the preparation of polymeric solid acid based on the chemical modification of poly (1-fenietileno) (PS) and Poly (1-chloroethylene) (PVC) by the introduction of sulfonic acid groups and the application of these polymers as catalysts in the esterification reaction of oleic acid with methanol. The modified materials were characterized by Infrared Spectroscopy, Elemental Analysis and titration acid-base of the acid groups. All techniques confirmed the chemical changes and the presence of sulfur associated with sulfonic acid groups or sulfates. The modified polymers excellent performance in the esterification reaction of oleic acid with methanol a degree of conversion higher than 90% for all investigated polymers (modified PS and PVC (5% w / w)), with a mass ratio of oleic acid: methanol 1:10 to 100 ° C. The best performance was observed for the modified PVC catalyst (PVCS) which showed low degree of swelling during the reactions is recovered by filtration different from that observed for polystyrene sulfonate (PSS). Given these facts, the PVCS was employed as a catalyst in the esterification reaction of oleic acid in different times and different temperatures to obtain the kinetic parameters of the reaction. Experimental data show a great fit for pseudo-homogeneous model of second order and activation energy value of 41.12 kJ mol -1, below that found in the literature for the uncatalyzed reaction, 68.65 kJ mol -1 .The PVCS exhibits good catalytic activity for 3 times of reuse, with a slight decrease in the third cycle, but with a conversion of about 78%. The results show that solid polymeric acid has good chemical stability for the application in esterification reaction of commercial importance with possible application in the biodiesel production. The advantages in use of this system are the increased reaction rate at about 150 times, at these test conditions, the replacement of sulfuric acid as a catalyst for this being the most corrosive and the possibility of reuse of the polymer for several cycles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study involved the synthesis of photocatalysts based on titanium dioxide (TiO2). The photocatalysts were synthesized by the sol-gel method using three different proportions of acetone (25%, 50% and 75% v/v) in water/acetone mixtures, in order to control the hydrolysis of the precursor of titanium (titanium tetraisopropoxide). Aiming to investigate the structural, morphological and electronic changes provoked by the use of the solvent mixtures, different methodologies were used to characterize the oxides, such as X-ray diffraction (XRD), RAMAN spectroscopy, UV-Vis diffuse reflectance spectroscopy, and measurements of specific surface area (BET). XRD combined to RAMAN analyses revealed that the products are two-phase highly crystalline oxides involving anatase as main phase and brookite. Besides, the refined XRD using the method of Rietveld demonstrated that the presence of acetone during the synthesis influenced in the composition of the crystalline phases, increasing the proportion of the brookite phase between 13 and 22%. The band gap energy of these oxides practically did not suffer changes as function of the synthesis conditions. As shown by the isotherm, these photocatalysts are mesoporous materials with mean diameter of pores of 7 nm and approximately 20% of porosity. The surface area of the oxides prepared by hydrolysis in presence of acetone was 12% higher compared to the bare oxide. After characterized, these oxides had their photocatalytic activities evaluated by photodegradation of the azo dyes Ponceau 4R (P4R), Tartrazine (TTZ) and Reactive Red 120 (RR120), and also by the ability to mediate the photocatalytic production of hydrogen. Using the most efficient photocatalyst, the mineralization achieved for the dyes P4R, RR120 and TTZ was of respectively 83%, 79% and 56% in 120 minutes of reaction, while the discoloration of P4R e RR120 reached 100% and 94% for TTZ. In addition, the same photocatalyst in the presence of 0.5% w/w of Platinum and suspended in a 5:1 v/v water/methanol mixture, produced 56 mmol of gaseous hydrogen in five hours of experiment, corresponding to a specific rate of hydrogen production of 139.5 mmol h-1 g-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mixed metal oxides constitute an important class of catalytic materials widely investigated in different fields of applications. Studies of rare earth nickelates have been carried by several researchers in order to investigate the structural stability afforded by oxide formed and the existence of catalytic properties at room temperature. So, this study aims synthesize the nanosized catalyst of nickelate of lanthanum doped with strontium (La(1-x)SrxNiO4-d; x = 0,2 and 0,3), through the Pechini method and your characterization for subsequent application in the desulfurization of thiophene reaction. The precursor solutions were calcined at 300ºC/2h for pyrolysis of polyester and later calcinations occurred at temperatures of 500 - 1000°C. The resulting powders were characterized by thermogravimetric analysis (TG / DTG), surface area for adsorption of N2 by BET method, X-ray diffraction (XRD), scanning electron microscopy (HR_SEM) and spectrometry dispersive energy (EDS). The results of XRD had show that the perovskites obtained consist of two phases (LSN and NiO) and from 700ºC have crystalline structure. The results of SEM evidenced the obtainment of nanometric powders. The results of BET show that the powders have surface area within the range used in catalysis (5-50m2/g). The characterization of active sites was performed by reaction of desulfurization of thiophene at room temperature and 200ºC, the relation F/W equal to 0,7 mol h-1mcat -1. The products of the reaction were separated by gas chromatography and identified by the selective detection PFPD sulfur. All samples had presented conversion above 95%

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, mixed oxides were synthesized by two methods: polymeric precursor and gel-combustion. The oxides, Niquelate of Lanthanum, Cobaltate of Lanthanum and Cuprate of Lanthanum were synthesized by the polymeric precursor method, and treated at 300 º C for 2 hours, calcined at 800 º C for 6h in air atmosphere. In gel-combustion method were produced and oxides using urea and citric acid as fuel, forming for each fuel the following oxides Ferrate of Lanthanum, Cobaltato of Lanthanum and Ferrato of Cobalt and Lanthanum, which were submitted to the combustion process assisted by microwave power maximum of 10min. The samples were characterized by: thermogravimetric analysis, X-ray diffraction; fisisorção of N2 (BET method) and scanning electron microscopy. The reactions catalytic of depolymerization of poly (methyl methacrylate), were performed in a reactor of silica, with catalytic and heating system equipped with a data acquisition system and the gas chromatograph. For the catalysts synthesized using the polymeric precursor method, the cuprate of lanthanum was best for the depolymerization of the recycled polymer, obtaining 100% conversion in less time 554 (min), and the pure polymer, was the Niquelate of Lanthanum, with 100% conversion in less time 314 (min). By gel-combustion method using urea as fuel which was the best result obtained Ferrate of Lanthanum for the pure polymer with 100% conversion in less time 657 (min), and the recycled polymer was Cobaltate of Lanthanum with 100 % conversion in less time 779 (min). And using citric acid to obtain the best result for the pure polymer, was Ferrate of Lanthanum with 100% conversion in less time 821 (min and) for the recycled polymer, was Ferrate of Lanthanum with 98.28% conversion in less time 635 (min)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nickel-bases catalysts have been used in several reform reactions, such as in the partial oxidation of methane to obtain H2 or syngas (H2 + CO). High levels of conversion are usually obtained using this family of catalysts, however, their deactivation resulting from carbon deposition still remains a challenge. Different approaches have been tested aiming at minimizing this difficulty, including the production of perovskites and related structures using modern synthesis methods capable of producing low cost materials with controlled microstructural characteristics at industrial scale. To establish grounds for comparison, in the present study LaNixFe1-xO3 (x=0, 0.3 or 0.7) perovskites were prepared following the Pechini method and by microwave assisted self-combustion. All samples were sub sequently calcined at 900 °C to obtain the target phase. The resulting ceramic powders were characterized by thermogravimetric analysis, infrared spectroscopy, X ray diffraction, specific area and temperature programmed reduction tests. Calcined samples were also used in the partial oxidation reaction of methane to evaluate the level of conversion, selectivity and carbon deposition. The results showed that the calcined samples were crystalline and the target phase was formed regardless of the synthesis method. According to results obtained by Rietveld refinement, we observed the formation of 70.0% of LaNi0.3Fe0.7O3 and 30.0% of La2O3 for samples LN3F7-900- P, LN3F7-900-M and 41,6% of LaNi0.7Fe0.3O3, 30.7% of La2NiO4 and 27.7% of La2O3 for samples LN7F3-900-P and LN7F3-900-M.Temperature-programmed profiles of the LaNiO3 sample revealed the presence of a peak around 510 °C, whereas the LaFeO3 sample depicted a peak above 1000°C. The highest l evel of methane conversion was obtained for LaNiO3 synthesized by the Pechini method. Overall, catalysts prepared by the Pechini method depicted better conversion levels compared to those produced by microwave assisted self-combustion

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, the area of advanced materials has been considerably, especially when it comes to materials for industrial use, such as is the case with structured porosity of catalysts suitable for catalytic processes. The use of catalysts combined with the fast pyrolysis process is an alternative to the oxygenate production of high added value, because, in addition to increasing the yield and quality of products, allows you to manipulate the selectivity to a product of interest, and therefore allows greater control over the characteristics of the final product. Based on these arguments, in this work were prepared titanium catalysts supported on MCM-41 for use in catalytic pyrolysis of biomass, called elephant grass. The reactions of pyrolysis of biomass were performed in a micro pyrolyzer, Py-5200, coupled to GC / MS, the company CDS Corporation, headquartered in the United States. The catalysts Ti-MCM-41 in different molar ratios were characterized by XRD, TG / DTG, FT-IR, SEM, XRF, UV-visible adsorption of nitrogen and the distribution of particle diameter and specific surface area measurement by the BET method. From the catalytic tests it was observed that the catalysts synthesized showed good results for the pyrolysis reaction.The main products were obtained a higher yield of aldehydes, ketones and furan. It was observed that the best reactivity is a direct function of the ratio Si/Ti, nature and concentration of the active species on mesoporous supports. Among the catalysts Ti-MCM-41 (molar ratio Si / Ti = 25 and 50), the ratio Si / Ti = 25 (400 ° C and 600 ° C) favored the cracking of oxygenates such as acids , aldehydes, ketones, furans and esters. Already the sample ratio Si / Ti = 50 had the highest yield of aromatic oxygenates

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ionic oxides with ABO3 structure, where A represents a rare earth element or an alkaline metal and B is a transition metal from group VIII of the periodic table are potential catalysts for oxidation and good candidates for steam reforming reaction. Different methods have been considered for the synthesis of the oxide materials with perovskite structure to produce a high homogeneous material with low amount of impurities and low calcination temperatures. In the current work, oxides with the LaNiO3 formula had been synthesized using the method of the polymeric precursors. The thermal treatment of the materials took place at 300 ºC for 2h. The material supported in alumina and/or zirconia was calcined at 800 ºC temperature for 4h. The samples had been characterized by the following techniques: thermogravimetry; infrared spectroscopy; X-ray diffraction; specific surface area; distribution of particle size; scanning electron microscopy and thermo-programmed reduction. The steam reforming reaction was carried out in a pilot plant using reducing atmosphere in the reactor with a mixture of 10% H2-Argon, a mass about 5g of catalyst, flowing at 50 mL.min-1. The temperature range used was 50 - 1000 oC with a heating rate of 10 oC.min-1. A thermal conductivity detector was used to analyze the gas after the water trapping, in order to permit to quantify the consumption of hydrogen for the lanthanum nickelates (LaNiO3). The results showed that lanthanum nickelate were more efficient when supported in alumina than when supported in zirconia. It was observed that the methane conversion was approximately 100% and the selectivity to hydrogen was about 70%. In all cases were verified low selectivity to CO and CO2

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The production of synthesis gas has received renewed attention due to demand for renewable energies to reduce the emissions of gases responsible for enhanced greenhouse effect. This work was carried out in order to synthesize, characterize and evaluate the implementation of nickel catalysts on MCM-41 in dry reforming reactions of methane. The mesoporous molecular sieves were synthesized using as silica sources the tetraethyl orthosilicate (TEOS) and residual glass powder (PV). The sieves were impregnated with 10% nickel to obtain the metallic catalysts (Ni/MCM-41). These materials were calcined and characterized by Thermogravimetric Analysis (TG), Infrared spectroscopy (FTIR), X-ray Diffraction (XRD), Temperature-Programmed Reduction (TPR) and N2 Adsorption/Desorption isotherms (BET/BJH). The catalytic properties of the samples were evaluated in methane dry reforming with CO2 in order to produce synthesis gas to be used in the petrochemical industry. The materials characterized showed hexagonal structure characteristic of mesoporous material MCM-41 type, being maintained after impregnation with nickel. The samples presented variations in the specific surface area, average volume and diameter of pores based on the type of interaction between the nickel and the mesoporous support. The result of the the catalytic tests showed conversions about 91% CO2, 86% CH4, yelds about 85% CO and 81% H2 to Ni/MCM-41_TEOS_C, and conversions about 87% CO2, 82% CH4, yelds about 70% CO and 59% H2 to Ni/MCM-41_PV_C. The similar performance confirms that the TEOS can be replaced by a less noble materials

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neste estudo foi investigada a alcoólise enzimática do óleo de soja com etanol, utilizando t-butanol como solvente e enzimas imobilizadas Lipozyme TL IM, Lipozyme RM IM e Novozym 435 como catalisadores. As reações foram realizadas em um reator batelada fechado acoplado a um condensador e com constante agitação. Foram avaliadas a influência do t-butanol, do tipo de enzima utilizada, da razão molar álcool/óleo e da temperatura no rendimento em biodiesel. A etanólise do óleo de soja por sucessivas adições de álcool foi investigada e as melhores condições foram obtidas em presença de t-butanol, razão molar etanol/óleo igual a 3, temperatura de 50C e 5% (m/m) de Novozym 435. Nas reações conduzidas em presença de t-butanol não foram observadas diferenças significativas entre a adição direta e a escalonada do álcool. Os efeitos da adição de álcool só foram observados na ausência de t-butanol. O rendimento máximo em ésteres etílicos atingido foi cerca de 66% após 4h de reação com Novozym 435 na presença de solvente.