958 resultados para Cadeias de Markov. Algoritmos genéticos


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Con el surgir de los problemas irresolubles de forma eficiente en tiempo polinomial en base al dato de entrada, surge la Computación Natural como alternativa a la computación clásica. En esta disciplina se trata de o bien utilizar la naturaleza como base de cómputo o bien, simular su comportamiento para obtener mejores soluciones a los problemas que los encontrados por la computación clásica. Dentro de la computación natural, y como una representación a nivel celular, surge la Computación con Membranas. La primera abstracción de las membranas que se encuentran en las células, da como resultado los P sistemas de transición. Estos sistemas, que podrían ser implementados en medios biológicos o electrónicos, son la base de estudio de esta Tesis. En primer lugar, se estudian las implementaciones que se han realizado, con el fin de centrarse en las implementaciones distribuidas, que son las que pueden aprovechar las características intrínsecas de paralelismo y no determinismo. Tras un correcto estudio del estado actual de las distintas etapas que engloban a la evolución del sistema, se concluye con que las distribuciones que buscan un equilibrio entre las dos etapas (aplicación y comunicación), son las que mejores resultados presentan. Para definir estas distribuciones, es necesario definir completamente el sistema, y cada una de las partes que influyen en su transición. Además de los trabajos de otros investigadores, y junto a ellos, se realizan variaciones a los proxies y arquitecturas de distribución, para tener completamente definidos el comportamiento dinámico de los P sistemas. A partir del conocimiento estático –configuración inicial– del P sistema, se pueden realizar distribuciones de membranas en los procesadores de un clúster para obtener buenos tiempos de evolución, con el fin de que la computación del P sistema sea realizada en el menor tiempo posible. Para realizar estas distribuciones, hay que tener presente las arquitecturas –o forma de conexión– de los procesadores del clúster. La existencia de 4 arquitecturas, hace que el proceso de distribución sea dependiente de la arquitectura a utilizar, y por tanto, aunque con significativas semejanzas, los algoritmos de distribución deben ser realizados también 4 veces. Aunque los propulsores de las arquitecturas han estudiado el tiempo óptimo de cada arquitectura, la inexistencia de distribuciones para estas arquitecturas ha llevado a que en esta Tesis se probaran las 4, hasta que sea posible determinar que en la práctica, ocurre lo mismo que en los estudios teóricos. Para realizar la distribución, no existe ningún algoritmo determinista que consiga una distribución que satisfaga las necesidades de la arquitectura para cualquier P sistema. Por ello, debido a la complejidad de dicho problema, se propone el uso de metaheurísticas de Computación Natural. En primer lugar, se propone utilizar Algoritmos Genéticos, ya que es posible realizar alguna distribución, y basada en la premisa de que con la evolución, los individuos mejoran, con la evolución de dichos algoritmos, las distribuciones también mejorarán obteniéndose tiempos cercanos al óptimo teórico. Para las arquitecturas que preservan la topología arbórea del P sistema, han sido necesarias realizar nuevas representaciones, y nuevos algoritmos de cruzamiento y mutación. A partir de un estudio más detallado de las membranas y las comunicaciones entre procesadores, se ha comprobado que los tiempos totales que se han utilizado para la distribución pueden ser mejorados e individualizados para cada membrana. Así, se han probado los mismos algoritmos, obteniendo otras distribuciones que mejoran los tiempos. De igual forma, se han planteado el uso de Optimización por Enjambres de Partículas y Evolución Gramatical con reescritura de gramáticas (variante de Evolución Gramatical que se presenta en esta Tesis), para resolver el mismo cometido, obteniendo otro tipo de distribuciones, y pudiendo realizar una comparativa de las arquitecturas. Por último, el uso de estimadores para el tiempo de aplicación y comunicación, y las variaciones en la topología de árbol de membranas que pueden producirse de forma no determinista con la evolución del P sistema, hace que se deba de monitorizar el mismo, y en caso necesario, realizar redistribuciones de membranas en procesadores, para seguir obteniendo tiempos de evolución razonables. Se explica, cómo, cuándo y dónde se deben realizar estas modificaciones y redistribuciones; y cómo es posible realizar este recálculo. Abstract Natural Computing is becoming a useful alternative to classical computational models since it its able to solve, in an efficient way, hard problems in polynomial time. This discipline is based on biological behaviour of living organisms, using nature as a basis of computation or simulating nature behaviour to obtain better solutions to problems solved by the classical computational models. Membrane Computing is a sub discipline of Natural Computing in which only the cellular representation and behaviour of nature is taken into account. Transition P Systems are the first abstract representation of membranes belonging to cells. These systems, which can be implemented in biological organisms or in electronic devices, are the main topic studied in this thesis. Implementations developed in this field so far have been studied, just to focus on distributed implementations. Such distributions are really important since they can exploit the intrinsic parallelism and non-determinism behaviour of living cells, only membranes in this case study. After a detailed survey of the current state of the art of membranes evolution and proposed algorithms, this work concludes that best results are obtained using an equal assignment of communication and rules application inside the Transition P System architecture. In order to define such optimal distribution, it is necessary to fully define the system, and each one of the elements that influence in its transition. Some changes have been made in the work of other authors: load distribution architectures, proxies definition, etc., in order to completely define the dynamic behaviour of the Transition P System. Starting from the static representation –initial configuration– of the Transition P System, distributions of membranes in several physical processors of a cluster is algorithmically done in order to get a better performance of evolution so that the computational complexity of the Transition P System is done in less time as possible. To build these distributions, the cluster architecture –or connection links– must be considered. The existence of 4 architectures, makes that the process of distribution depends on the chosen architecture, and therefore, although with significant similarities, the distribution algorithms must be implemented 4 times. Authors who proposed such architectures have studied the optimal time of each one. The non existence of membrane distributions for these architectures has led us to implement a dynamic distribution for the 4. Simulations performed in this work fix with the theoretical studies. There is not any deterministic algorithm that gets a distribution that meets the needs of the architecture for any Transition P System. Therefore, due to the complexity of the problem, the use of meta-heuristics of Natural Computing is proposed. First, Genetic Algorithm heuristic is proposed since it is possible to make a distribution based on the premise that along with evolution the individuals improve, and with the improvement of these individuals, also distributions enhance, obtaining complexity times close to theoretical optimum time. For architectures that preserve the tree topology of the Transition P System, it has been necessary to make new representations of individuals and new algorithms of crossover and mutation operations. From a more detailed study of the membranes and the communications among processors, it has been proof that the total time used for the distribution can be improved and individualized for each membrane. Thus, the same algorithms have been tested, obtaining other distributions that improve the complexity time. In the same way, using Particle Swarm Optimization and Grammatical Evolution by rewriting grammars (Grammatical Evolution variant presented in this thesis), to solve the same distribution task. New types of distributions have been obtained, and a comparison of such genetic and particle architectures has been done. Finally, the use of estimators for the time of rules application and communication, and variations in tree topology of membranes that can occur in a non-deterministic way with evolution of the Transition P System, has been done to monitor the system, and if necessary, perform a membrane redistribution on processors to obtain reasonable evolution time. How, when and where to make these changes and redistributions, and how it can perform this recalculation, is explained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La base para realizar cualquier tarea agrícola mediante robots, es la planificación y seguimiento de rutas o trayectorias. Así, el objetivo de esta investigación es desarrollar e implementar algoritmos de seguimiento y planificación (global y local) de trayectorias de robots agrícolas. La planificación global se realizó mediante el algoritmo A* aplicado sobre mapas de cultivo y la planificación local se realizó aplicando A* sobre un mapa 2D obtenido a partir de imágenes 3D de los obstáculos encontrados en el camino. En cuanto el seguimiento de trayectorias, esta se realizó implementando una aproximación numérica de la trayectoria mediante el método de Euler. Los parámetros correspondientes a la dinámica del controlador de la trayectoria del robot fueron obtenidos mediante algoritmos genéticos. El mapa 3D fue generado a partir del sensor Kinect de Microsoft y sus datos procesados usando Matlab 2010b. Los resultados preliminares muestran que es posible implementar estos algoritmos en pequeños robots diseñados para cultivos hilerados. Proveyendo así, una metodología robusta que permite seguir las rutas asignadas con errores inferiores a RMSE=0.1m en trayectorias de 30m.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Os sistemas biológicos são surpreendentemente flexíveis pra processar informação proveniente do mundo real. Alguns organismos biológicos possuem uma unidade central de processamento denominada de cérebro. O cérebro humano consiste de 10(11) neurônios e realiza processamento inteligente de forma exata e subjetiva. A Inteligência Artificial (IA) tenta trazer para o mundo da computação digital a heurística dos sistemas biológicos de várias maneiras, mas, ainda resta muito para que isso seja concretizado. No entanto, algumas técnicas como Redes neurais artificiais e lógica fuzzy tem mostrado efetivas para resolver problemas complexos usando a heurística dos sistemas biológicos. Recentemente o numero de aplicação dos métodos da IA em sistemas zootécnicos tem aumentado significativamente. O objetivo deste artigo é explicar os princípios básicos da resolução de problemas usando heurística e demonstrar como a IA pode ser aplicada para construir um sistema especialista para resolver problemas na área de zootecnia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Segundo estudos oficiais, a produção de energia eléctrica, principalmente através da queima de combustíveis fósseis, é responsável pelo aumento das emissões de gases de efeito estufa na atmosfera, contribuindo desta forma para o aquecimento global do planeta. Nesse sentido, os governos de diversos países, assumiram vários compromissos a nível internacional, com o propósito de reduzir o impacto ambiental associado à procura global de energia no planeta, assim como a utilização de recursos naturais. Desses compromissos, destaca-se o Protocolo de Quioto, no qual Portugal assumiu o compromisso de não apresentar um aumento de emissões superior a 27% relativamente ao ano de referência de 1990, durante o período de 2008-2012. Nesse sentido, uma das medidas para o controlo dessas emissões, passa pelo uso racional de energia consumida, nomeadamente através do sector doméstico, um dos sectores que registou uma maior subida do consumo de energia eléctrica nos últimos tempos. Uma das formas de o fazer, poderá passar pela escolha racional dos equipamentos que se utilizam hoje em dia no sector doméstico, baseada por sua vez em normas e critérios específicos para o efeito. No presente trabalho, o problema de maximização de eficiência energética é apresentado e formulado como um problema de optimização, sendo a sua resolução suportada em algoritmos evolucionários, nomeadamente algoritmos genéticos como referência o método Simplex para comparação de resultados e posterior validação dos algoritmos genéticos, enquanto método de optimização para a resolução deste tipo de problema. Factores como o ciclo de vida do produto, investimento realizado e despesas no consumo de energia eléctrica, serão tidos em conta, quando existe a necessidade de se obter uma solução ecológica e económica, assegurando ao mesmo tempo a satisfação do consumidor e do meio ambiente. Serão apresentadas ainda, diversas hipóteses de parametrização, tendo em vista os estudos de desempenho dos dois métodos de optimização a serem analisados e será elaborado ainda um estudo, para avaliar o desempenho dos algoritmos genéticos, mediante a variação de parâmetros a ele associados. No final conclui-se que a utilização dos AG’s é adequada ao problema de maximização da eficiência energética providenciando soluções distintas na escolha de equipamentos com valores semelhantes de indicadores económicos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Ciência da Computação - IBILCE

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho, realizado no âmbito da unidade curricular de Tese/Dissertação, procura mostrar de que forma a Computação Evolucionária se pode aplicar no mundo da Música. Este é, de resto, um tema sobejamente aliciante dentro da área da Inteligência Artificial. Começa-se por apresentar o mundo da Música com uma perspetiva cronológica da sua história, dando especial relevo ao estilo musical do Fado de Coimbra. Abordam-se também os conceitos fundamentais da teoria musical. Relativamente à Computação Evolucionária, expõem-se os elementos associados aos Algoritmos Evolucionários e apresentam-se os principais modelos, nomeadamente os Algoritmos Genéticos. Ainda no âmbito da Computação Evolucionária, foi elaborado um pequeno estudo do “estado da arte” da aplicação da Computação Evolucionária na Música. A implementação prática deste trabalho baseia-se numa aplicação – AG Fado – que compõe melodias de Fado de Coimbra, utilizando Algoritmos Genéticos. O trabalho foi dividido em duas partes principais: a primeira parte consiste na recolha de informações e posterior levantamento de dados estatísticos sobre o género musical escolhido, nomeadamente fados em tonalidade maior e fados em tonalidade menor; a segunda parte consiste no desenvolvimento da aplicação, com a conceção do respetivo algoritmo genético para composição de melodias. As melodias obtidas através da aplicação desenvolvida são bastante audíveis e boas melodicamente. No entanto, destaca-se o facto de a avaliação ser efetuada por seres humanos o que implica sensibilidades musicais distintas levando a resultados igualmente distintos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Automação e Electrónica Industrial

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective of this work was to investigate the application of experimental design techniques for the identification of Michaelis-Menten kinetic parameters. More specifically, this study attempts to elucidate the relative advantages/disadvantages of employing complex experimental design techniques in relation to equidistant sampling when applied to different reactor operation modes. All studies were supported by simulation data of a generic enzymatic process that obeys to the Michaelis-Menten kinetic equation. Different aspects were investigated, such as the influence of the reactor operation mode (batch, fed-batch with pulse wise feeding and fed-batch with continuous feeding) and the experimental design optimality criteria on the effectiveness of kinetic parameters identification. The following experimental design optimality criteria were investigated: 1) minimization of the sum of the diagonal of the Fisher information matrix (FIM) inverse (A-criterion), 2) maximization of the determinant of the FIM (D-criterion), 3) maximization of the smallest eigenvalue of the FIM (E-criterion) and 4) minimization of the quotient between the largest and the smallest eigenvalue (modified E-criterion). The comparison and assessment of the different methodologies was made on the basis of the Cramér-Rao lower bounds (CRLB) error in respect to the parameters vmax and Km of the Michaelis-Menten kinetic equation. In what concerns the reactor operation mode, it was concluded that fed-batch (pulses) is better than batch operation for parameter identification. When the former operation mode is adopted, the vmax CRLB error is lowered by 18.6 % while the Km CRLB error is lowered by 26.4 % when compared to the batch operation mode. Regarding the optimality criteria, the best method was the A-criterion, with an average vmax CRLB of 6.34 % and 5.27 %, for batch and fed-batch (pulses), respectively, while presenting a Km’s CRLB of 25.1 % and 18.1 %, for batch and fed-batch (pulses), respectively. As a general conclusion of the present study, it can be stated that experimental design is justified if the starting parameters CRLB errors are inferior to 19.5 % (vmax) and 45% (Km), for batch processes, and inferior to 42 % and to 50% for fed-batch (pulses) process. Otherwise equidistant sampling is a more rational decision. This conclusion clearly supports that, for fed-batch operation, the use of experimental design is likely to largely improve the identification of Michaelis-Menten kinetic parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este estudo pretende mostrar algumas aplicações dos métodos computacionais na actividade de projecto em Engenharia Mecânica. Apresentam-se problemas concretos de engenharia que foram abordados durante um estágio realizado no CERN – Centre Européen pour la Recherche Nucléaire, e onde foram utilizados: a) o método dos elementos finitos para cálculo de temperaturas e fluxos de calor e a sua influência sobre os deslocamentos, tensões e deformações que ocorrem numa peça; b) o método híbrido dos elementos finitos/volumes finitos para a discretização das equações de Navier-Stokes e a análise do escoamento de fluidos; c) um algoritmo genético para a obtenção da solução óptima de um problema estrutural. O projecto em engenharia é uma actividade cada vez mais complexa, que requer o uso de ferramentas computacionais sofisticadas tais como os programas ANSYS e MATLAB que foram utilizados no estudo. A criação de modelos numéricos e a análise do seu comportamento com estas ferramentas requer simultaneamente um bom conhecimento dos princípios que estão na base do seu desenvolvimento e uma boa perícia na sua manipulação. Com elas é possível obter soluções quando os constrangimentos do projecto são exigentes e análises detalhadas do comportamento estrutural são necessárias. Neste estudo pretende-se também demonstrar que uma combinação inovadora destas ferramentas pode contribuir para obter aplicações úteis para a actividade de projecto em engenharia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Mecânica

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de Mestrado em Engenharia Electrotécnica e de Computadores

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este artigo apresenta uma nova abordagem (MM-GAV-FBI), aplicável ao problema da programação de projectos com restrições de recursos e vários modos de execução por actividade, problema conhecido na literatura anglo-saxónica por MRCPSP. Cada projecto tem um conjunto de actividades com precedências tecnológicas definidas e um conjunto de recursos limitados, sendo que cada actividade pode ter mais do que um modo de realização. A programação dos projectos é realizada com recurso a um esquema de geração de planos (do inglês Schedule Generation Scheme - SGS) integrado com uma metaheurística. A metaheurística é baseada no paradigma dos algoritmos genéticos. As prioridades das actividades são obtidas a partir de um algoritmo genético. A representação cromossómica utilizada baseia-se em chaves aleatórias. O SGS gera planos não-atrasados. Após a obtenção de uma solução é aplicada uma melhoria local. O objectivo da abordagem é encontrar o melhor plano (planning), ou seja, o plano que tenha a menor duração temporal possível, satisfazendo as precedências das actividades e as restrições de recursos. A abordagem proposta é testada num conjunto de problemas retirados da literatura da especialidade e os resultados computacionais são comparados com outras abordagens. Os resultados computacionais validam o bom desempenho da abordagem, não apenas em termos de qualidade da solução, mas também em termos de tempo útil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Os mercados de energia elétrica são atualmente uma realidade um pouco por todo o mundo. Contudo, não é consensual o modelo regulatório a utilizar, o que origina a utilização de diferentes modelos nos diversos países que deram início ao processo de liberalização e de reestruturação do sector elétrico. A esses países, dado que a energia elétrica não é um bem armazenável, pelo menos em grandes quantidades, colocam-se questões importantes relacionadas com a gestão propriamente dita do seu sistema elétrico. Essas questões implicam a adoção de regras impostas pelo regulador que permitam ultrapassar essas questões. Este trabalho apresenta um estudo feito aos mercados de energia elétrica existentes um pouco por todo o mundo e que o autor considerou serem os mais importantes. Foi também feito um estudo de ferramentas de otimização essencialmente baseado em meta-heurísticas aplicadas a problemas relacionados com a operação dos mercados e com os sistemas elétricos de energia, como é o exemplo da resolução do problema do Despacho Económico. Foi desenvolvida uma aplicação que simula o funcionamento de um mercado que atua com o modelo Pool Simétrico, em que são transmitidas as ofertas de venda e compra de energia elétrica por parte dos produtores, por um lado, e dos comercializadores, consumidores elegíveis ou intermediários financeiros, por outro, analisando a viabilidade técnica do Despacho Provisório. A análise da viabilidade técnica do Despacho Provisório é verificada através do modelo DC de trânsito de potências. No caso da inviabilidade do Despacho Provisório, por violação de restrições afetas ao problema, são determinadas medidas corretivas a esse despacho, com base nas ofertas realizadas e recorrendo a um Despacho Ótimo. Para a determinação do Despacho Ótimo recorreu-se à meta-heurística Algoritmos Genéticos. A aplicação foi desenvolvida no software MATLAB utilizando a ferramenta Graphical User Interfaces. A rede de teste utilizada foi a rede de 14 barramentos do Institute of Electrical and Electronics Engineers (IEEE). A aplicação mostra-se competente no que concerne à simulação de um mercado com tipo de funcionamento Pool Simétrico onde são efetuadas ofertas simples e onde as transações ocorrem no mercado diário, porém, não reflete o problema real relacionado a este tipo de mercados. Trata-se, portanto, de um simulador básico de um mercado de energia cujo modelo de funcionamento se baseia no tipo Pool Simétrico.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fuzzy logic controllers (FLC) are intelligent systems, based on heuristic knowledge, that have been largely applied in numerous areas of everyday life. They can be used to describe a linear or nonlinear system and are suitable when a real system is not known or too difficult to find their model. FLC provide a formal methodology for representing, manipulating and implementing a human heuristic knowledge on how to control a system. These controllers can be seen as artificial decision makers that operate in a closed-loop system, in real time. The main aim of this work was to develop a single optimal fuzzy controller, easily adaptable to a wide range of systems – simple to complex, linear to nonlinear – and able to control all these systems. Due to their efficiency in searching and finding optimal solution for high complexity problems, GAs were used to perform the FLC tuning by finding the best parameters to obtain the best responses. The work was performed using the MATLAB/SIMULINK software. This is a very useful tool that provides an easy way to test and analyse the FLC, the PID and the GAs in the same environment. Therefore, it was proposed a Fuzzy PID controller (FL-PID) type namely, the Fuzzy PD+I. For that, the controller was compared with the classical PID controller tuned with, the heuristic Ziegler-Nichols tuning method, the optimal Zhuang-Atherton tuning method and the GA method itself. The IAE, ISE, ITAE and ITSE criteria, used as the GA fitness functions, were applied to compare the controllers performance used in this work. Overall, and for most systems, the FL-PID results tuned with GAs were very satisfactory. Moreover, in some cases the results were substantially better than for the other PID controllers. The best system responses were obtained with the IAE and ITAE criteria used to tune the FL-PID and PID controllers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica