273 resultados para CORTICOSTERONE
Resumo:
Learning and memory are exquisitely sensitive to behavioral stress, but the underlying mechanisms are still poorly understood. Because activity-dependent persistent changes in synaptic strength are believed to mediate memory processes in brain areas such as the hippocampus we have examined the means by which stress affects synaptic plasticity in the CA1 region of the hippocampus of anesthetized rats, Inescapable behavioral stress (placement on an elevated platform for 30 min) switched the direction of plasticity, favoring low frequency stimulation-induced decreases in synaptic transmission (long-term depression, LTD), and opposing the induction of long-term potentiation by high frequency stimulation, We have discovered that glucocorticoid receptor activation mediates these effects of stress on LTD and longterm potentiation in a protein synthesis-dependent manner because they were prevented by the glucocorticoid receptor antagonist RU 38486 and the protein synthesis inhibitor emetine. Consistent with this, the ability of exogenously applied corticosterone in non-stressed rats to mimic the effects of stress on synaptic plasticity was also blocked by these agents, The enablement of low frequency stimulation-induced LTD by both stress and exogenous corticosterone was also blocked by the transcription inhibitor actinomycin D, Thus, naturally occurring synaptic plasticity is liable to be reversed in stressful situations via glucocorticoid receptor activation and mechanisms dependent on the synthesis of new protein and RNA, This indicates that the modulation of hippocampus-mediated learning by acute inescapable stress requires glucocorticoid receptor-dependent initiation of transcription and translation.
Resumo:
Recurrence is a key characteristic in the development of epilepsy. It remains unclear whether seizure recurrence is sensitive to postseizure stress. Here, tonic-clonic seizures were induced with a convulsive dose of pentylenetetrazole (PTZ), and acute seizure recurrence was evoked with a subconvulsive dose of the drug. We found that stress inhibited seizure recurrence when applied 30 minutes or 2 hours, but not 4 hours, after the tonic-clonic seizure. The time-dependent anti-recurrence effect of stress was mimicked by the stress hormone corticosterone and blocked by co-administration of mineralocorticoid and glucocorticoid receptor antagonists. Furthermore, in a PTZ-induced epileptic kindling model, corticosterone administered 30 minutes after each seizure decreased the extent of seizures both during the kindling establishment and in the following challenge test. These results provide novel insights into both the mechanisms of and therapeutic strategies for epilepsy. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
We examined breeding behavior responses of male root votes (Microtus oeconomus) to temporal risk of predation by using acute and chronic exposure to predator odor. The 2 series of exposure experiments provided 2 types of temporal patterns of risk: continuous safety with a brief period of risk and Sustained risk with a brief period of safety. Male root votes that were acutely exposed to predator odor for I h suppressed their breeding behavior, but bred immediately after exposure to control odor for I h. Those chronically exposed to predator odor for 20 days maintained behavioral suppression during the 1-h period of exposure to control odor. Acutely exposed males did not change their physiological patterns of breeding, but those chronically exposed to predator odor had reduced testosterone concentration and epididymis index. Our results indicate that breeding behavior in a given situation depends on the overall patterns of risk experienced by male root votes, and the acute and chronic stress responses that affect reproduction are responsible for different behavioral responses to the 2 types of temporal patterns of risk. We also discuss the reasons for conflicting results about breeding suppression of votes between previous studies in the laboratory and the field.
Resumo:
This project was carried out with the aims to investigate the mechanism of circadian immune regulation by one of the core Clock gene, mPer2. To achieve this, we selected mPer2 knock out (mPer2-/-) mice as the optimal animal model. Two different approaches were performed. In the first approach, we injected WT or mPer2-/- mice with an equal dosage of lipopolysaccharide (LPS), and systematically measured serum corticosterone induction, expression of core Clock genes, as well as a key enzyme for corticosterone metabolism (mStAR) in adrenal gland. We found that the acute induction of corticosterone and mStAR were closely associated with the circadian immune response to LPS. Besides, real time quantitative PCR (q-PCR) and luciferase assay consistently showed that mStAR is a Clock controlled gene in adrenal gland, where its expression is negatively influenced by mPer2. In the second approach, expression level and circadian manner of 11 cytotoxicity regulation genes in WT or mPer2-/- mice bone marrow were measured by q-PCR in order to explore the candidate genes which could mediate the circadian immune regulation by mPer2. We found that expression level of Ly49C, Ly49I, and Nkg2d was significant down-regulated in mPer2-/- mice. Further, we found that daily expression of Ly49C and Nkg2d fluctuated in a circadian manner in WT mice, where these rhythms were disrupted in mPer2-/- mice. Thus, it was suggested that these two cytotoxic genes were two clock controlled genes whose circadian expression were regulated by mPer2. Taken together, our results suggested that corticosterone, mStAR, Ly49C, and Nkg2d were four candidate molecules that may mediate the circadian immune response regulation by mPer2.
Resumo:
It has been shown that prenatal light exposure and corticosterone improve memory retention of dark hatched chicks. The object of this study was to explore the neural mechanisms underlying the effect of prenatal light exposure and corticosterone on memory retention of chicks. To detect the effect of different prenatal treatments on memory retention of chicks, we used one-trial passive avoidance model. To examine the expression of glucocorticoid receptor (GR), neural cell adhesion molecule (NCAM), growth-associated protein 43 (GAP-43) and polysialic acid (PSA) in HV and LPO of chick brain, we used immunohistochemical method. Prenatal light exposure and glucocorticoid (corticosterone, dexamthesone) administered in embryonic day 20 (E20) markedly improve memory retention in dark hatched chicks. Light plays a critical role in improving memory. The critical exposure period is E19 and E20. The effect of these two hormones and light exposure can be significantly blocked by their receptor antagonist administration respectively. The light, corticosterone and particularly darkness significantly up-regulated the level of GR; the expression of NCAM and GAP-43 in HV and LPO peaked in E20 in normal hatched chicks and was significantly increased by light exposure and corticosterone. Protein synthesis inhibitor anisomycin markedly reduced the effect of light exposure but partially reduced the effect of corticosterone; light exposure and corticosterone in E20 significantly up-regulated PSA expression. Removing PSA from NCAM significantly retarded the effect of corticosterone on memory retention in chicks. Therefore, The effects of prenatal light exposure and corticosterone on memory retention are mediated via both corticosteroid receptors. The effects of both prenatal light and corticosterone might at first change the plasticity of the brain by up-regulation the synthesis and modification of proteins, and then influence the behavior performance of the chicks.
Resumo:
This study was undertaken to investigate the effect of emotional stress on humoral immunoactivity and to examine whether the sympathetic nervous system was involved in the immunomodulation. In the present study, two types of emotional stressors were used. One was footshock apparatus used to cause the rats which were given footshock before, emotional stressed; the other was an empty water bottle used to cause the rats which were trained to drink water at two set times each day, emotional stressed. The effect of emotional stress on the primary immune function (anti-ovallum antibody level and spleen index), the endocrine response (corticosterone level, epinephrine and norepinephrine level), the behavioral changes (freezing, defecation, grooming and attacking behavior) were investigated. The main results were: 1. Two types of emotional stress significantly increased the level of plasma corticosterone, norepinephrine and epinephrine, as well as freezing, defecation and attacking behavior. 2. Two types of emotional stress significantly decreased the level of anti-ovallum antibody. A negative correlation between catecholamine level (epinephrine and norepinephrine) and antibody level or spleen index was found. 3. β-adrenergic receptor antagonist propranolol could reverse the immunomodulation induced by emotional stress. 4. After two types of emotional stress, c-fos expression was observed in the following brain areas or nucleus; arcuate nucleus, anterior commissure nucleus, diffuse part of dorsalmedial nucleus hypothalamus, lateral dorsal nucleus thalamus, medial nucleus amygdala, solitary nucleus, frontal cortex and cingulum. These brain areas and nucleus are involved in the central modulation of the autonomic nervous system. Taken together, these findings demonstrate that emotional stress can suppress humoral immunity and the activation of the sympathetic nervous system is involved in the humoral immunomodulation induced by emotional stress.
Resumo:
Credible and stable animal behavioral models are necessary to research the mechanisms of addiction in vivo, especially to study the relationship between memory or stress and drug addiction, which has been one of the focuses in this field. So the object of this study was to observe the influences of several factors on the behavioral effects of morphine shown in the paradigms of conditioned place preference (CPP) and locomotor activity (LA), and to explore the effects of adrenalectomy on LA induced by morphine in rats. In addition, the cortexes of rats were examined, which were exposed to chronic administration of several doses of morphine with or without foot shock. Moreover, a new behavioral model was built to quantify the motivation of drug seeking. The results showed that CPP was more sensitive to low dose of morphine than to high dose. The period of experiment could be shortened by increasing the training times everyday, whereas in this way the dose of morphine should be low enough to avoid the impact between the near two exposures to morphine. Effects of chronic administration of morphine on LA in rats were dose- and time- dependent, which supplied evidence to choose parameters in other behavioral models. The results obtained by the simplified LA paradigm showed that hyperactivity of low dose of morphine following hypoactivity, and naloxone had no effects on LA but blocked the locomotion effects of morphine. Obvious effects of morphine on LA of rats might depend on a reasonable level of plasma corticosterone, which may determine individual vulnerability to drug addiction. Stress may also potentiate the vulnerability by aggravating damage to cortex of rats induced by drug dose-dependently, which is suggested by the results of histological examination. The result that frontal and temporal cortexes and hippocampus were injured suggests that there may be a close relationship between memory and drug addiction. It was showed that the new behavioral model on the basis of Morris water maze might be used to quantify the motivation of drug-craving.
Resumo:
The molecular and cellular basis of stress pathology remains an important research question in biological science. A better understanding of this may enable the development of novel approaches for the treatment of stress-related disorders. There is a considerable body of scientific evidence suggesting that dietary lipids, phospholipids and omega-3 polyunsaturated fatty acids (n-3 PUFAs), have therapeutic potential for certain psychiatric disorders. Thus, we proposed n-3 PUFAs as a novel strategy for the prevention or amelioration of stress-related disorders. We hypothesised that these compounds would improve behavioural and neurobiological responses and alter gut microbial composition. Furthermore, we proposed a new mechanism of action exerted by n-3 PUFAs using an in vitro model of stress. Lastly, we explored the protective effects of both phospholipids and n-3 PUFAs against neuroinflammation, which has been shown to contribute to the development of stress-related disorders. We provide further evidence that glucocorticoids, inflammation and early-life stress induce vulnerability to psychopathologies. Specifically, we have demonstrated that corticosterone (CORT) alters cortical neuron and astrocyte percentage composition, reduces brain-derived-neuronal factor (BDNF) expression, and induces glucocorticoid receptor (GR) down-regulation in mixed cortical cultures. Interestingly, we found that lipopolysaccharide (LPS) treatment resulted in an over-expression of pro-inflammatory cytokines in cortical astrocyte cultures. Moreover, we demonstrate that early-life stress induces changes to the monoaminergic and immune systems as well as altered neuroendocrine response to stressors later in life. In addition, we found that early-life stress alters the gut microbiota in adulthood. These data demonstrate that n-3 PUFAs can attenuate CORT-induced cellular changes, but not those caused by LPS, within the cerebral cortex. Similarly, phospholipids were unable to reverse LPS-induced inflammation in cultured astrocytes. In addition, this thesis proposes that n-3 PUFAs may prevent the development or lessen the symptoms of mental illnesses, ameliorating anxiety- and depressive-like symptoms as well as cognitive effects, particularly when administered during neurodevelopment. Such effects may be mediated by GR activation as well as by modification of the gut microbiota composition. Taken together, our findings suggest that n-3 PUFAs have therapeutic potential for stress-related disorders and we provide evidence for the mechanisms by which they may exert these effects. These findings contribute to an exciting and growing body of research suggesting that nutritional interventions may have an important role to play in the treatment of stress-related psychiatric conditions.
Resumo:
The relative plasticity hypothesis predicts that alternative tactics are associated with changes in steroid hormone levels. In species with alternative male reproductive tactics, the highest androgen levels have usually been reported in dominant males. However, in sociable species, dominant males show amicable behaviors to gain access to females, which might conflict with high testosterone levels. We compared testosterone, corticosterone, and resting metabolic rate in male striped mice (Rhabdomys pumilio) following a conditional strategy with three different reproductive tactics: (i) philopatric group-living males, (ii) solitary-living roamers, (iii) dominant but sociable group-living territorial breeders. Philopatrics had the lowest testosterone but highest corticosterone levels, suggesting that they make the best of a bad job. Dominant territorial breeders had lower testosterone levels than roamers, which have a lower competitive status. Roamers had the highest testosterone levels, which might promote risky behavior, such as invading territories defended by territorial males. Roamers also had lower resting metabolic rates than either type of group-living males. Our results suggest that dominant males' testosterone levels reflect a trade-off between low testosterone amicable behavior and high testosterone dominance behavior.
Resumo:
Tese de doutoramento, Ciências Biomédicas (Neurociências), Universidade de Lisboa, Faculdade de Medicina, 2014
Resumo:
In rats, neonatal treatment with monosodium L-glutamate (MSG) induces several metabolic and neuroendocrine abnormalities, which result in hyperadiposity. No data exist, however, regarding neuroendocrine, immune and metabolic responses to acute endotoxemia in the MSG-damaged rat. We studied the consequences of MSG treatment during the acute phase response of inflammatory stress. Neonatal male rats were treated with MSG or vehicle (controls, CTR) and studied at age 90 days. Pituitary, adrenal, adipo-insular axis, immune, metabolic and gonadal functions were explored before and up to 5 h after single sub-lethal i.p. injection of bacterial lipopolysaccharide (LPS; 150 microg/kg). Our results showed that, during the acute phase response of inflammatory stress in MSG rats: (1) the corticotrope-adrenal, leptin, insulin and triglyceride responses were higher than in CTR rats, (2) pro-inflammatory (TNFalpha) cytokine response was impaired and anti-inflammatory (IL-10) cytokine response was normal, and (3) changes in peripheral estradiol and testosterone levels after LPS varied as in CTR rats. These data indicate that metabolic and neroendocrine-immune functions are altered in MSG-damaged rats. Our study also suggests that the enhanced corticotrope-corticoadrenal activity in MSG animals could be responsible, at least in part, for the immune and metabolic derangements characterizing hypothalamic obesity.
Resumo:
Two enzyme mechanisms were examined: the 21-dehydroxylation of corticosteroids by the anaerobe Eubacterium l en tum, and the hydroxylation of steroids by fungal cytochrome P450. Deuterium labelling techniques were used to study the enzymic dehydroxylation. Corticosteroids doubly labelled (2H) at the C-21 position were incubated with a culture of Eubacterium lentum. It was found that t he enzymic dehydroxylation proceeded with the loss of one 2H f rom C-21 per molecule of substrate. The kinetic isotope ef fect f or the reaction was found to be k~kD = 2. 28. These results suggest that enzyme/substr ate binding in this case may proceed via t he enol form of the substrate. Also , it appears that this binding is, at least in part, the rate determining step of t he reaction. The hydroxylation of steroids by fungal cytochrome P450 was examined by means of a product study. Steroids with a double bond at the A8 (9), ~( lO ), or ~ (ll) position were synthesized. These steroids were then incubated with fungal strains known to use a cytochrome P450 monooxygenase to hydroxylate at positions allylic to these doubl e bonds. The products formed in these incubations indicated that the double bonds had migrated during allylic hydroxylat ion. This suggests that a carbon centred radical or ion may be an intermediate i n the cytochrome P450 cat alytic cycle.
Resumo:
There is a paucity of studies comparing social buffering in adolescents and adults, despite their marked differences in social behaviour. I investigated whether greater effects of social buffering on plasma corticosterone concentrations and expression of Zif268 in neural regions after an acute stressor would be found in adolescent compared with adult rats. Samples were obtained before and after one hour of isolation stress and after either one or three hours of recovery back in the colony with either a familiar or unfamiliar cage partner. Adolescent and adult rats did not differ in plasma concentrations of corticosterone at any time point. Corticosterone concentrations were higher after one hour isolation than at baseline (p < 0.001), and rats with a familiar partner during the recovery phase had lower corticosterone concentrations than did rats with an unfamiliar partner (p = 0.02). Zif268 immunoreactive cell counts were higher in the arcuate nucleus in both age groups after isolation (p = 0.007) and higher in the paraventricular nucleus of adolescents compared with adults during the recovery phase irrespective of partner familiarity. There was a significant decrease in immunoreactive cell counts after one hour isolation compared to baseline in the basolateral amygdala, central nucleus of the amygdala, and in the pyramidal layer of the hippocampus (all p < 0.05). An effect of partner familiarity on Zif268 immunoreactive cell counts was found in the granule layer of the dentate gyrus irrespective of age (higher in those with a familiar partner, p = 0.03) and in the medial prefrontal cortex in adolescents (higher with an unfamiliar partner, p = 0.02). Overall, the acute stress and partner familiarity produced a similar pattern of results in adolescents and adults, with both age groups sensitive to the social context.
Resumo:
L’axe hypothalamo-hypophyso-surrénalien joue un rôle essentiel dans l’adaptation et la réponse au stress. Toutefois, l’hyperactivation de cet axe ou des niveaux chroniquement élevés de glucocorticoïdes (GC) entraînent des conséquences pathologiques. Le système dopaminergique mésocortical, qui se projette dans le cortex préfrontal médian (CPFm), joue un rôle adaptatif en protégeant contre le stress. Jusqu’à présent, les interactions fonctionnelles entre les GC (ex : corticostérone) et le système dopaminergique mésocortical ne sont pas élucidées. Dans ce mémoire, nous avons évalué les effets des GC sur les fonctions dopaminergiques préfrontales en élevant chroniquement, à l’aide de minipompes osmotiques, les niveaux de corticostérone aux concentrations physiologiques maximales (1 mg/kg/h pendant 7 jours). Ce traitement n’a pas modifié significativement, chez les rats stressés ou non, les niveaux post mortem de dopamine et de son métabolite dans le tissu du CPFm. Toutefois, l’évaluation par voltamétrie in vivo des changements de dopamine extracellulaire dans le CPFmv a permis d’observer que la corticostérone augmente significativement la libération de dopamine en réponse à l’exposition à l’odeur de renard et au pincement de la queue. Nos études nous permettent de conclure que la corticostérone potentialise la fonction dopaminergique mésocorticale qui, à son tour, facilite la régulation négative en période de stress.
Resumo:
Plusieurs études ont montré que la perturbation des fonctions du système cardiovasculaire constitue un risque majeur de développement du trouble dépressif chez l'homme. De plus, suite à un infarctus du myocarde, 15-30% de la population développe la dépression majeure dans les 6 à 8 mois suivant cet événement suggérant un lien entre les maladies cardiovasculaires et la dépression. Cette dépression est caractérisée par une série de troubles du sommeil. Approximativement 80% des patients hospitalisés et 70% des malades en consultation externe avec une dépression majeure rapportent des difficultés d’initiation et de maintient du sommeil. Les travaux effectués dans les laboratoires de Roger Godbout et Guy Rousseau ont montré que suite à un infarctus aigu du myocarde chez le rat, on observait de l'anhédonie, de la détresse comportementale et de la mort cellulaire par apoptose dans le système limbique. Cette apoptose suivait un décours spatial et temporel et avait été prévenue par l’administration d’antidépresseurs. De plus, le facteur de nécrose tumorale alpha (TNF-α) serait un composant majeur dans l’activation de la voie extrinsèque conduisant à la mort cellulaire observée dans le système limbique. Les résultats de cette thèse montrent que les rats ayant subi un infarctus du myocarde (IM) présentaient à la fois des troubles du sommeil, de l'anhédonie et de la détresse comportementale comparables à ceux des autres modèles animaux de dépression. Les symptômes de dépression ont été prévenus par l'administration à la fois d'un antidépresseur (escitalopram) et d'un inhibiteur de la synthèse des cytokines proinflammatoires (pentoxifylline). Les troubles du sommeil et l'apoptose avaient aussi été prévenus par l'admistration respective de l'escitalopram et de la pentoxifylline. De plus, les animaux ayant subi un IM présentaient une diminution du nombre de cellules cholinergiques dans le générateur du sommeil paradoxal expliquant en partie la réduction de la durée du sommeil paradoxal observée dans cette thèse. Les animaux ayant subi un IM montraient une augmentation systémique du TNF-α, l'interleukine-1 (IL-1β), et la prostaglandine E2 (PGE2). Le traitement par l'escitalopram bloquait l'augmentation des niveaux plasmatiques du TNF-α, de l'IL-1β, et de la PGE2 sans affecter celui de la corticostérone et de l'IL-6. Finalement, pour la première fois, nous avons mis évidence qu'un traitement autre qu'un antidépresseur (pentoxifylline) pouvait réduire le comportement dépressif dans la dépression post-infarctus du myocarde lorsqu'il est administré quelques minutes avant la période ischémique. Il apparait donc important d’intervenir rapidement chez les patients à la suite d'un IM et ce dès les premiers jours et avant même l’apparition des premiers signes d’insomnie et de dépression. Une combinaison de traitements pharmacologique et comportemental serait une voie intéressante à considérer dans la prise en charge de ces patients.