723 resultados para Business Intelligence, ETL, Data Warehouse, Metadati, Reporting


Relevância:

100.00% 100.00%

Publicador:

Resumo:

L’obiettivo della tesi, sviluppata presso l’azienda Onit Group s.r.l., è stato quello di realizzare un sistema d’analisi what-if che consenta di effettuare valutazioni economiche in maniera rapida, precisa, ed in totale autonomia. L’applicativo sviluppato, richiesto dalla direzione commerciale dall’azienda Orogel, ha il compito di assegnare percentuali di premio agli acquisti effettuati dai clienti su determinate famiglie di vendita. Il programma è il primo progetto di tipo data entry sviluppato nel reparto di Business Unit Data Warehouse e Business Intelligence di Onit e offre una duplice utilità. Da un lato semplifica la gestione dell’assegnamento dei premi annuali che ogni anno sono rinegoziati, su cui l’utente della direzione commerciale può fare delle stime sulla base dei premi definiti l’anno precedente. D’altra parte rendere la direzione commerciale di Orogel più autonoma offrendo all’utenza un unico ambiente su cui muoversi.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il presente elaborato ha come oggetto la progettazione e lo sviluppo di una soluzione Hadoop per il Calcolo di Big Data Analytics. Nell'ambito del progetto di monitoraggio dei bottle cooler, le necessità emerse dall'elaborazione di dati in continua crescita, ha richiesto lo sviluppo di una soluzione in grado di sostituire le tradizionali tecniche di ETL, non pi�ù su�fficienti per l'elaborazione di Big Data. L'obiettivo del presente elaborato consiste nel valutare e confrontare le perfomance di elaborazione ottenute, da un lato, dal flusso di ETL tradizionale, e dall'altro dalla soluzione Hadoop implementata sulla base del framework MapReduce.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação apresentada à Escola Superior de Tecnologia do Instituto Politécnico de Castelo Branco para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Desenvolvimento de Software e Sistemas Interactivos, realizada sob a orientação científica da categoria profissional do orientador Doutor Eurico Ribeiro Lopes, do Instituto Politécnico de Castelo Branco.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Key Performance Indicators (KPIs) and their predictions are widely used by the enterprises for informed decision making. Nevertheless , a very important factor, which is generally overlooked, is that the top level strategic KPIs are actually driven by the operational level business processes. These two domains are, however, mostly segregated and analysed in silos with different Business Intelligence solutions. In this paper, we are proposing an approach for advanced Business Simulations, which converges the two domains by utilising process execution & business data, and concepts from Business Dynamics (BD) and Business Ontologies, to promote better system understanding and detailed KPI predictions. Our approach incorporates the automated creation of Causal Loop Diagrams, thus empowering the analyst to critically examine the complex dependencies hidden in the massive amounts of available enterprise data. We have further evaluated our proposed approach in the context of a retail use-case that involved verification of the automatically generated causal models by a domain expert.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il presente elaborato esplora l’attitudine delle organizzazioni nei confronti dei processi di business che le sostengono: dalla semi-assenza di struttura, all’organizzazione funzionale, fino all’avvento del Business Process Reengineering e del Business Process Management, nato come superamento dei limiti e delle problematiche del modello precedente. All’interno del ciclo di vita del BPM, trova spazio la metodologia del process mining, che permette un livello di analisi dei processi a partire dagli event data log, ossia dai dati di registrazione degli eventi, che fanno riferimento a tutte quelle attività supportate da un sistema informativo aziendale. Il process mining può essere visto come naturale ponte che collega le discipline del management basate sui processi (ma non data-driven) e i nuovi sviluppi della business intelligence, capaci di gestire e manipolare l’enorme mole di dati a disposizione delle aziende (ma che non sono process-driven). Nella tesi, i requisiti e le tecnologie che abilitano l’utilizzo della disciplina sono descritti, cosi come le tre tecniche che questa abilita: process discovery, conformance checking e process enhancement. Il process mining è stato utilizzato come strumento principale in un progetto di consulenza da HSPI S.p.A. per conto di un importante cliente italiano, fornitore di piattaforme e di soluzioni IT. Il progetto a cui ho preso parte, descritto all’interno dell’elaborato, ha come scopo quello di sostenere l’organizzazione nel suo piano di improvement delle prestazioni interne e ha permesso di verificare l’applicabilità e i limiti delle tecniche di process mining. Infine, nell’appendice finale, è presente un paper da me realizzato, che raccoglie tutte le applicazioni della disciplina in un contesto di business reale, traendo dati e informazioni da working papers, casi aziendali e da canali diretti. Per la sua validità e completezza, questo documento è stata pubblicato nel sito dell'IEEE Task Force on Process Mining.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The global business environment is witnessing tough times, and this situation has significant implications on how organizations manage their processes and resources. Accounting information system (AIS) plays a critical role in this situation to ensure appropriate processing of financial transactions and availability to relevant information for decision-making. We suggest the need for a dynamic AIS environment for today’s turbulent business environment. This environment is possible with a dynamic AIS, complementary business intelligence systems, and technical human capability. Data collected through a field survey suggests that the dynamic AIS environment contributes to an organization’s accounting functions of processing transactions, providing information for decision making, and ensuring an appropriate control environment. These accounting processes contribute to the firm-level performance of the organization. From these outcomes, one can infer that a dynamic AIS environment contributes to organizational performance in today’s challenging business environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clinical Data Warehousing: A Business Analytic approach for managing health data

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since 2007, close collaboration between the Learning and Teaching Unit’s Academic Quality and Standards team and the Department of Reporting and Analysis’ Business Objects team resulted in a generational approach to reporting where QUT established a place of trust. This place of trust is where data owners are confident in date storage, data integrity, reported and shared. While the role of the Department of Reporting and Analysis focused on the data warehouse, data security and publication of reports, the Academic Quality and Standards team focused on the application of learning analytics to solve academic research questions and improve student learning. Addressing questions such as: • Are all students who leave course ABC academically challenged? • Do the students who leave course XYZ stay within the faculty, university or leave? • When students withdraw from a unit do they stay enrolled on full or part load or leave? • If students enter through a particular pathway, what is their experience in comparison to other pathways? • With five years historic reporting, can a two-year predictive forecast provide any insight? In answering these questions, the Academic Quality and Standards team then developed prototype data visualisation through curriculum conversations with academic staff. Where these enquiries were applicable more broadly this information would be brought into the standardised reporting for the benefit of the whole institution. At QUT an annual report to the executive committees allows all stakeholders to record the performance and outcomes of all courses in a snapshot in time or use this live report at any point during the year. This approach to learning analytics was awarded the Awarded 2014 ATEM/Campus Review Best Practice Awards in Tertiary Education Management for The Unipromo Award for Excellence in Information Technology Management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Internet das Coisas tal como o Big Data e a análise dos dados são dos temas mais discutidos ao querermos observar ou prever as tendências do mercado para as próximas décadas, como o volume económico, financeiro e social, pelo que será relevante perceber a importância destes temas na atualidade. Nesta dissertação será descrita a origem da Internet das Coisas, a sua definição (por vezes confundida com o termo Machine to Machine, redes interligadas de máquinas controladas e monitorizadas remotamente e que possibilitam a troca de dados (Bahga e Madisetti 2014)), o seu ecossistema que envolve a tecnologia, software, dispositivos, aplicações, a infra-estrutura envolvente, e ainda os aspetos relacionados com a segurança, privacidade e modelos de negócios da Internet das Coisas. Pretende-se igualmente explicar cada um dos “Vs” associados ao Big Data: Velocidade, Volume, Variedade e Veracidade, a importância da Business Inteligence e do Data Mining, destacando-se algumas técnicas utilizadas de modo a transformar o volume dos dados em conhecimento para as empresas. Um dos objetivos deste trabalho é a análise das áreas de IoT, modelos de negócio e as implicações do Big Data e da análise de dados como elementos chave para a dinamização do negócio de uma empresa nesta área. O mercado da Internet of Things tem vindo a ganhar dimensão, fruto da Internet e da tecnologia. Devido à importância destes dois recursos e á falta de estudos em Portugal neste campo, com esta dissertação, sustentada na metodologia do “Estudo do Caso”, pretende-se dar a conhecer a experiência portuguesa no mercado da Internet das Coisas. Visa-se assim perceber quais os mecanismos utilizados para trabalhar os dados, a metodologia, sua importância, que consequências trazem para o modelo de negócio e quais as decisões tomadas com base nesses mesmos dados. Este estudo tem ainda como objetivo incentivar empresas portuguesas que estejam neste mercado ou que nele pretendam aceder, a adoptarem estratégias, mecanismos e ferramentas concretas no que diz respeito ao Big Data e análise dos dados.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Se basa en un análisis teórico de los sistemas de información como lo es el almacenaje de datos, cubos OLAP e inteligencia de negocios. Seguidamente, se hace un análisis de los sectores económicos de Colombia con un especial interés sobre el sector de alimentos, de esta manera conceptualizar la empresa sobre la cual este trabajo se enfocara. Se encontrará un análisis del caso de éxito Summerwood Corporation, el cual brindará una justificación para la propuesta final presentada a la empresa Dipsa Food, Pyme dedicada a la producción de alimentos no perecederos ubicada en la ciudad de Bogotá D.C –Colombia, la cual tiene gran interés en cuanto al desarrollo de nuevas tecnologías que brinden información fidedigna para la toma de decisiones

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabajo recopila literatura académica relevante sobre estrategias de entrada y metodologías para la toma de decisión sobre la contratación de servicios de Outsourcing para el caso de empresas que planean expandirse hacia mercados extranjeros. La manera en que una empresa planifica su entrada a un mercado extranjero, y realiza la consideración y evaluación de información relevante y el diseño de la estrategia, determina el éxito o no de la misma. De otro lado, las metodologías consideradas se concentran en el nivel estratégico de la pirámide organizacional. Se parte de métodos simples para llegar a aquellos basados en la Teoría de Decisión Multicriterio, tanto individuales como híbridos. Finalmente, se presenta la Dinámica de Sistemas como herramienta valiosa en el proceso, por cuanto puede combinarse con métodos multicriterio.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Embora o objectivo de redução de acidentes laborais seja frequentemente invocado para justificar uma aplicação preventiva de testes de álcool e drogas no trabalho, há poucas evidências estatisticamente relevantes das pressupostas causalidade e correlação negativa entre a sujeição aos testes e os posteriores acidentes. Os dados de testes e dos acidentes ocorridos com os colaboradores de uma transportadora ferroviária portuguesa de âmbito nacional, durante anos recentes, começam agora a ser explorados, em busca de relações entre estas e outras variáveis biográficas. - Although the aim of reducing occupational accidents is frequently cited to justify preventive drug and alcohol testing at work, there is little statistically significant evidence of the assumed causality and negative correlation between exposure to testing and subsequent accidents. Data mining of tests and accidents involving employees of a Portuguese national wide railway transportation company, during recent years, is now beginning in search of relations between these and other biographical variables.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As soluções informáticas de Customer Relationship Management (CRM) e os sistemas de suporte à informação, designados por Business Intelligence (BI), permitem a recolha de dados e a sua transformação em informação e em conhecimento, vital para diferenciação das organizações num Mundo globalizado e em constante mudança. A construção de um Data Warehouse corporativo é fundamental para as organizações que utilizam vários sistemas operacionais de modo a ser possível a agregação da informação. A Fundação INATEL – uma fundação privada de interesse público, 100% estatal – é um exemplo deste tipo de organização. Com uma base de dados de clientes superior a 250.000, atuando em áreas tão diferentes como sejam o Turismo, a Cultura e o Desporto, sustentado em mais de 25 sistemas informáticos autónomos. A base de estudo deste trabalho é a procura de identificação dos benefícios da implementação de um CRM Analítico na Fundação INATEL. Apresentando-se assim uma metodologia para a respetiva implementação e sugestão de um modelo de dados para a obtenção de uma visão única do cliente, acessível a toda a organização, de modo a garantir a total satisfação e consequente fidelização à marca INATEL. A disponibilização desta informação irá proporcionar um posicionamento privilegiado da Fundação INATEL e terá um papel fundamental na sua sustentabilidade económica.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiple versions of information and associated problems are well documented in both academic research and industry best practices. Many solutions have proposed a single version of the truth, with Business intelligence being adopted by many organizations. Business Intelligence (BI), however, is largely based on the collection of data, processing and presentation of information to meet different stakeholders’ requirement. This paper reviews the promise of Enterprise Intelligence, which promises to support decision-making based on a defined strategic understanding of the organizations goals and a unified version of the truth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advances in hardware and software technology enable us to collect, store and distribute large quantities of data on a very large scale. Automatically discovering and extracting hidden knowledge in the form of patterns from these large data volumes is known as data mining. Data mining technology is not only a part of business intelligence, but is also used in many other application areas such as research, marketing and financial analytics. For example medical scientists can use patterns extracted from historic patient data in order to determine if a new patient is likely to respond positively to a particular treatment or not; marketing analysts can use extracted patterns from customer data for future advertisement campaigns; finance experts have an interest in patterns that forecast the development of certain stock market shares for investment recommendations. However, extracting knowledge in the form of patterns from massive data volumes imposes a number of computational challenges in terms of processing time, memory, bandwidth and power consumption. These challenges have led to the development of parallel and distributed data analysis approaches and the utilisation of Grid and Cloud computing. This chapter gives an overview of parallel and distributed computing approaches and how they can be used to scale up data mining to large datasets.