962 resultados para Bose-Einstein condensates
Resumo:
We propose a simple single-layer magnetic microtrap configuration which can trap an array of magnetically-trapped Bose-Einstein condensate. The configuration consists of two series of parallel wires perpendicular to each other and all of the crossing points are cut off for maintaining the uniformity of the current. We analyse the trapping potential, the position of trapping centres and the uniformity of the array of the traps. The trapping depth and trapping frequency with different parameters are also calculated. Lastly, the effect of the cut-off crossing points, dissipate power, chip production are introduced concisely.
Resumo:
We have observed strong scattering of a probe light by dilute Bose-Einstein condensate (BEC) Rb-87 gas in a tight magnetic trap. The scattering light forms fringes at the image plane. It is found that we can infer the real size of the condensation and the number of the atoms by modelling the imaging system. We present a quantitative calculation of light scattering by the condensed atoms. The calculation shows that the experimental results agree well with the prediction of the generalized diffraction theory, and thus we can directly observe the phase transition of BEC in a tight trap.
Resumo:
A second-harmonic generation (SHG) is predicted for the Bogoliubov excitations in a two-component Bose-Einstein condensate. It is shown that, because the linear dispersion curve of the excitations displays two branches, the phase-matching condition for the SHG can be fulfilled if the wave vectors and frequencies of fundamental and second-harmonic waves are selected suitably from different branches. The nonlinearly coupled envelope equations for the SHG are derived by using a method of multiple scales. The explicit solutions of these envelope equations are provided and the conversion efficiency of the SHG is also discussed.
Resumo:
利用SU(2)规范场的单位矢量场分解形式讨论了Bose-Einstein凝聚体中的环流条件.对于二分量Bose-Einstein凝聚,内部态的SU(2)对称性将导致一个拓扑环流条件,这是一个推广的Mer-min—Ho关系.
Resumo:
The Josephson equations for a Bose-Einstein Condensate gas trapped in a double-well potential are derived with the two-mode approximation by the Gross-Pitaevskii equation. The dynamical characteristics of the equations are obtained by the numerical phase diagrams. The nonlinear self-trapping effect appeared in the phase diagrams are emphatically discussed, and the condition EcN > 4E(J) is presented.
Resumo:
We solve the Gross-Pitaevskii equation to study energy transfer from an oscillating
Resumo:
Mode-mixing of coherent excitations of a trapped Bose-Einstein condensate is modeled using the Bogoliubov approximation. Calculations are presented for second-harmonic generation between the two lowest-lying even-parity m=0 modes in an oblate spheroidal trap. Hybridization of the modes of the breather (l=0) and surface (l=4) states leads to the formation of a Bogoliubov dark state near phase-matching resonance so that a single mode is coherently populated. Efficient harmonic generation requires a strong coupling rate, sharply-defined and well-separated frequency spectrum, and good phase matching. We find that in all three respects the quantal results are significantly different from hydrodynamic predictions. Typically the second-harmonic conversion rate is half that given by an equivalent hydrodynamic estimate.
Resumo:
We show that an electrostatic qubit located near a Bose-Einstein condensate trapped in a symmetric double-well potential can be used to measure the duration the qubit has spent in one of its quantum states. The strong, medium, and weak measurement regimes are analyzed. The analogy between the residence and the traversal (tunnelling) times is highlighted.
Resumo:
We consider an electrostatic qubit located near a Bose-Einstein condensate (BEC) of noninteracting bosons in a double-well potential, which is used for qubit measurements. Tracing out the BEC variables we obtain a simple analytical expression for the qubit's density matrix. The qubit's evolution exhibits a slow (proportional to 1/root t) damping of the qubit's coherence term, which however turns to be a Gaussian one in the case of static qubit. This is in contrast to the exponential damping produced by most classical detectors. The decoherence is, in general, incomplete and strongly depends on the initial state of the qubit.
Resumo:
We examine the time evolution of cold atoms (impurities) interacting with an environment consisting of a degenerate bosonic quantum gas. The impurity atoms differ from the environment atoms, being of a different species. This allows one to superimpose two independent trapping potentials, each being effective only on one atomic kind, while transparent to the other. When the environment is homogeneous and the impurities are confined in a potential consisting of a set of double wells, the system can be described in terms of an effective spin-boson model, where the occupation of the left or right well of each site represents the two (pseudo)-spin states. The irreversible dynamics of such system is here studied exactly, i.e. not in terms of a Markovian master equation. The dynamics of one and two impurities is remarkably different in respect of the standard decoherence of the spin-boson system. In particular, we show: (i) the appearance of coherence oscillations, (ii) the presence of super and subdecoherent states that differ from the standard ones of the spin-boson model, and (iii) the persistence of coherence in the system at long times. We show that this behaviour is due to the fact that the pseudospins have an internal spatial structure. We argue that collective decoherence also prompts information about the correlation length of the environment. In a one-dimensional (1D) configuration, one can change even more strongly the qualitative behaviour of the dephasing just by tuning the interaction of the bath.
Resumo:
Using a model potential approach, we study the time-dependent behavior of a Bose-Einstein condensate with negative scattering length during its collapse in the zero-temperature limit. The condensate is modeled through an effective potential, which linearizes the Schrodinger equation, in order to obtain an intuitive visualization of the dynamics of the condensate. We find that a substantial fraction of the condensate survives the collapse. The origin for this survival is the reappearance of a barrier in the effective potential during the collapse. In contrast to previous calculations, the present calculations indicate that the size of the residual condensate strongly depends on the growth rate of the condensate. The present results are compared to other theoretical calculations and to experimental work.
Resumo:
Nous investiguons dans ce travail la création d'échantillons permettant l'étude du comportement des polaritons excitoniques dans les matériaux semi-conducteurs organiques. Le couplage fort entre les états excités d'électrons et des photons impose la création de nouveaux états propres dans le milieu. Ces nouveaux états, les polaritons, ont un comportement bosonique et sont donc capables de se condenser dans un état fortement dégénéré. Une occupation massive de l'état fondamental permet l'étude de comportements explicables uniquement par la mécanique quantique. La démonstration, au niveau macroscopique, d'effets quantiques promet d'éclairer notre compréhension de la matière condensée. De plus, la forte localisation des excitons dans les milieux organiques permet la condensation des polaritons excitoniques organiques à des températures beaucoup plus hautes que dans les semi-conducteurs inorganiques. À terme, les échantillons proposés dans ce travail pourraient donc servir à observer une phase cohérente macroscopique à des températures facilement atteignables en laboratoire. Les cavités proposées sont des résonateurs Fabry-Perot ultraminces dans lesquels est inséré un cristal unique d'anthracène. Des miroirs diélectriques sont fabriqués par une compagnie externe. Une couche d'or de 60 nanomètres est ensuite déposée sur leur surface. Les miroirs sont ensuite mis en contact, or contre or, et compressés par 2,6 tonnes de pression. Cette pression soude la cavité et laisse des espaces vides entre les lignes d'or. Une molécule organique, l'anthracène, est ensuite insérée par capillarité dans la cavité et y est cristallisée par la suite. Dans leur état actuel, les cavités présentent des défauts majeurs quant à la planarité des miroirs et à l'uniformité des cristaux. Un protocole détaillé est présenté et commenté dans ce travail. Nous y proposons aussi quelques pistes pour régler les problèmes courants de l'appareil.