932 resultados para Bio-based diisocyanate
Resumo:
In this work, we propose the Networks of Evolutionary Processors (NEP) [2] as a computational model to solve problems related with biological phenomena. In our first approximation, we simulate biological processes related with cellular signaling and their implications in the metabolism, by using an architecture based on NEP (NEP architecture) and their specializations: Networks of Polarized Evolutionary Processors (NPEP) [1] and NEP Transducers (NEPT) [3]. In particular, we use this architecture to simulate the interplay between cellular processes related with the metabolism as the Krebs cycle and the malate-aspartate shuttle pathway (MAS) both being altered by signaling by calcium.
Resumo:
n this paper we propose the use of Networks of Bio-inspired Processors (NBP) to model some biological phenomena within a computational framework. In particular, we propose the use of an extension of NBP named Network Evolutionary Processors Transducers to simulate chemical transformations of substances. Within a biological process, chemical transformations of substances are basic operations in the change of the state of the cell. Previously, it has been proved that NBP are computationally complete, that is, they are able to solve NP complete problems in linear time, using massively parallel computations. In addition, we propose a multilayer architecture that will allow us to design models of biological processes related to cellular communication as well as their implications in the metabolic pathways. Subsequently, these models can be applied not only to biological-cellular instances but, possibly, also to configure instances of interactive processes in many other fields like population interactions, ecological trophic networks, in dustrial ecosystems, etc.
Resumo:
Long-term forecasts of pest pressure are central to the effective management of many agricultural insect pests. In the eastern cropping regions of Australia, serious infestations of Helicoverpa punctigera (Wallengren) and H. armigera (Hübner)(Lepidoptera: Noctuidae) are experienced annually. Regression analyses of a long series of light-trap catches of adult moths were used to describe the seasonal dynamics of both species. The size of the spring generation in eastern cropping zones could be related to rainfall in putative source areas in inland Australia. Subsequent generations could be related to the abundance of various crops in agricultural areas, rainfall and the magnitude of the spring population peak. As rainfall figured prominently as a predictor variable, and can itself be predicted using the Southern Oscillation Index (SOI), trap catches were also related to this variable. The geographic distribution of each species was modelled in relation to climate and CLIMEX was used to predict temporal variation in abundance at given putative source sites in inland Australia using historical meteorological data. These predictions were then correlated with subsequent pest abundance data in a major cropping region. The regression-based and bioclimatic-based approaches to predicting pest abundance are compared and their utility in predicting and interpreting pest dynamics are discussed.
Resumo:
Funded by UK's Biotechnology and Biological Sciences Research Council (BBSRC) Department for Environment, Food and Rural Affairs (DEFRA). Grant Number: LK0863 BBSRC strategic programme Grant on Energy Grasses & Bio-refining. Grant Number: BBS/E/W/10963A01 OPTIMISC. Grant Number: FP7-289159 WATBIO. Grant Number: FP7-311929 Innovate UK/BBSRC ‘MUST’. Grant Number: BB/N016149/1
Resumo:
Background: Bio-conjugated nanoparticles are important analytical tools with emerging biological and medical applications. In this context, in situ conjugation of nanoparticles with biomolecules via laser ablation in an aqueous media is a highly promising one-step method for the production of functional nanoparticles resulting in highly efficient conjugation. Increased yields are required, particularly considering the conjugation of cost-intensive biomolecules like RNA aptamers. Results: Using a DNA aptamer directed against streptavidin, in situ conjugation results in nanoparticles with diameters of approximately 9 nm exhibiting a high aptamer surface density (98 aptamers per nanoparticle) and a maximal conjugation efficiency of 40.3%. We have demonstrated the functionality of the aptamer-conjugated nanoparticles using three independent analytical methods, including an agglomeration-based colorimetric assay, and solid-phase assays proving high aptamer activity. To demonstrate the general applicability of the in situ conjugation of gold nanoparticles with aptamers, we have transferred the method to an RNA aptamer directed against prostate-specific membrane antigen (PSMA). Successful detection of PSMA in human prostate cancer tissue was achieved utilizing tissue microarrays. Conclusions: In comparison to the conventional generation of bio-conjugated gold nanoparticles using chemical synthesis and subsequent bio-functionalization, the laser-ablation-based in situ conjugation is a rapid, one-step production method. Due to high conjugation efficiency and productivity, in situ conjugation can be easily used for high throughput generation of gold nanoparticles conjugated with valuable biomolecules like aptamers.
Resumo:
The implementation of a robotic security solution generally requires one algorithm to route the robot around the environment and another algorithm to perform anomaly detection. Solutions to the routing problem require the robot to have a good estimate of its own pose. We present a novel security system that uses metrics generated by the localisation algorithm to perform adaptive anomaly detection. The localisation algorithm is a vision-based SLAM solution called RatSLAM, based on mechanisms within the hippocampus. The anomaly detection algorithm is based on the mechanisms used by the immune system to identify threats to the body. The system is explored using data gathered within an unmodified office environment. It is shown that the algorithm successfully reacts to the presence of people and objects in areas where they are not usually present and is tolerised against the presence of people in environments that are usually dynamic.
Resumo:
Cell-based therapy is one of the major potential therapeutic strategies for cardiovascular, neuronal and degenerative diseases in recent years. Synthetic biodegradable polymers have been utilized increasingly in pharmaceutical, medical and biomedical engineering. Control of the interaction of living cells and biomaterials surfaces is one of the major goals in the design and development of new polymeric biomaterials in tissue engineering. The aims of this study is to develop a novel bio-mimic polymeric materials which will facilitate the delivery cells, control cell bioactivities and enhance the focal integration of graft cells with host tissues.
Resumo:
We describe a model of computation of the parallel type, which we call 'computing with bio-agents', based on the concept that motions of biological objects such as bacteria or protein molecular motors in confined spaces can be regarded as computations. We begin with the observation that the geometric nature of the physical structures in which model biological objects move modulates the motions of the latter. Consequently, by changing the geometry, one can control the characteristic trajectories of the objects; on the basis of this, we argue that such systems are computing devices. We investigate the computing power of mobile bio-agent systems and show that they are computationally universal in the sense that they are capable of computing any Boolean function in parallel. We argue also that using appropriate conditions, bio-agent systems can solve NP-complete problems in probabilistic polynomial time.
Vertical graphene gas- and bio-sensors via catalyst-free, reactive plasma reforming of natural honey
Resumo:
A rapid reforming of natural honey exposed to reactive low-temperature Ar + H2 plasmas produced high-quality, ultra-thin vertical graphenes, without any metal catalyst or external heating. This transformation is only possible in the plasma and fails in similar thermal processes. The process is energy-efficient, environmentally benign, and is much cheaper than common synthesis methods based on purified hydrocarbon precursors. The graphenes retain the essential minerals of natural honey, feature reactive open edges and reliable gas- and bio-sensing performance.
Resumo:
Optical emission of reactive plasma species during the synthesis of functionally graded calcium phosphate-based bioactive films has been investigated. The coatings have been deposited on Ti-6Al-4V orthopedic alloy by co-sputtering of hydroxyapatite (HA) and titanium targets in reactive plasmas of Ar + H2O gas mixtures. The species, responsible for the Ca-P-Ti film growth have been non-intrusively monitored in situ by a high-resolution optical emission spectroscopy (OES). It is revealed that the optical emission originating from CaO species dominates throughout the deposition process. The intensities of CaO, PO and CaPO species are strongly affected by variations of the operating pressure, applied RF power, and DC substrate bias. The optical emission intensity (OEI) of reaction species can efficiently be controlled by addition of H2O reactant.
Resumo:
Heart rate variability (HRV) refers to the regulation of the sinoatrial node, the natural pacemaker of the heart by the sympathetic and parasympathetic branches of the autonomic nervous system. HRV analysis is an important tool to observe the heart’s ability to respond to normal regulatory impulses that affect its rhythm. Like many bio-signals, HRV signals are non-linear in nature. Higher order spectral analysis (HOS) is known to be a good tool for the analysis of non-linear systems and provides good noise immunity. A computer-based arrhythmia detection system of cardiac states is very useful in diagnostics and disease management. In this work, we studied the identification of the HRV signals using features derived from HOS. These features were fed to the support vector machine (SVM) for classification. Our proposed system can classify the normal and other four classes of arrhythmia with an average accuracy of more than 85%.
Resumo:
There is an increased interest on the use of UAVs for environmental research and to track bush fire plumes, volcanic plumes or pollutant sources. The aim of this paper is to describe the theory and results of a bio-inspired plume tracking algorithm. A memory based and gradient based approach, were developed and compared. A method for generating sparse plumes was also developed. Results indicate the ability of the algorithms to track plumes in 2D and 3D.
Resumo:
Integration of biometrics is considered as an attractive solution for the issues associated with password based human authentication as well as for secure storage and release of cryptographic keys which is one of the critical issues associated with modern cryptography. However, the widespread popularity of bio-cryptographic solutions are somewhat restricted by the fuzziness associated with biometric measurements. Therefore, error control mechanisms must be adopted to make sure that fuzziness of biometric inputs can be sufficiently countered. In this paper, we have outlined such existing techniques used in bio-cryptography while explaining how they are deployed in different types of solutions. Finally, we have elaborated on the important facts to be considered when choosing appropriate error correction mechanisms for a particular biometric based solution.
Resumo:
Modularity has been suggested to be connected to evolvability because a higher degree of independence among parts allows them to evolve as separate units. Recently, the Escoufier RV coefficient has been proposed as a measure of the degree of integration between modules in multivariate morphometric datasets. However, it has been shown, using randomly simulated datasets, that the value of the RV coefficient depends on sample size. Also, so far there is no statistical test for the difference in the RV coefficient between a priori defined groups of observations. Here, we (1), using a rarefaction analysis, show that the value of the RV coefficient depends on sample size also in real geometric morphometric datasets; (2) propose a permutation procedure to test for the difference in the RV coefficient between a priori defined groups of observations; (3) show, through simulations, that such a permutation procedure has an appropriate Type I error; (4) suggest that a rarefaction procedure could be used to obtain sample-size-corrected values of the RV coefficient; and (5) propose a nearest-neighbor procedure that could be used when studying the variation of modularity in geographic space. The approaches outlined here, readily extendable to non-morphometric datasets, allow study of the variation in the degree of integration between a priori defined modules. A Java application – that will allow performance of the proposed test using a software with graphical user interface – has also been developed and is available at the Morphometrics at Stony Brook Web page (http://life.bio.sunysb.edu/morph/).