980 resultados para Bcr-abl Mutants
Resumo:
A 3-year old child with juvenile chronic myeloid leukaemia received a T cell-depleted BMT from a male unrelated donor. There was early graft failure associated with increasing splenomegaly and hypersplenism. Splenectomy was performed 53 days post-transplant and was followed by autologous marrow recovery with return of leukaemia. A second unrelated donor BMT was performed 9 months later using T cell-replete marrow from a similarly matched female donor. Grade 2 GVHD involving the skin and gut responded to treatment with steroids. Chimaerism was assessed using Y-specific polymerase chain reaction (PCR) and microsatellites. Samples taken at the time of splenectomy showed no donor marrow engraftment but there was significant engraftment in the spleen. Following the second transplant, donor-type haematopoiesis was documented using a panel of microsatellite probes. The patient remains well 6 months after transplant. Splenectomy should be considered prior to transplant in patients with significant splenomegaly and hypersplenism. Partial chimaerism in the spleen, but not bone marrow, post-BMT, has not previously been documented. PCR technology is a useful and highly sensitive way to assess chimaerism post-BMT and is informative in sex-matched cases, whilst the small amount of material required is advantageous in paediatric patients.
Resumo:
The recent discovery of oncogenic drivers and subsequent development of novel targeted strategies has significantly added to the therapeutic armamentarium of anti-cancer therapies. Targeting BCR-ABL in chronic myeloid leukemia (CML) or HER2 in breast cancer has led to practice-changing clinical benefits, while promising therapeutic responses have been achieved by precision medicine approaches in EGFR mutant lung cancer, colorectal cancer and BRAF mutant melanoma. However, although initial therapeutic responses to targeted therapies can be substantial, many patients will develop disease progression within 6-12 months. An increasing application of powerful omics-based approaches and improving preclinical models have enabled the rapid identification of secondary resistance mechanisms. Herein, we discuss how this knowledge has translated into rational, novel treatment strategies for relapsed patients in genomically selected cancer populations.
Resumo:
La vigueur de la réponse immunitaire générée par les cellules dendritiques (DC) a positionné ces cellules comme médiatrices centrales dans l’activation des lymphocytes T. La vulnérabilité des cellules cancéreuses de leucémie myéloïde chronique (LMC) à l’intervention immunitaire résulte apparemment de la capacité des cellules leucémiques de se différencier en DC. Ces DC ont alors la capacité de présenter des peptides provenant des cellules souches leucémiques aux lymphocytes T. Dans ce travail, nous démontrons que la plupart des patients atteints d’une LMC présentent un déficit important en DC au niveau du sang et de la moelle osseuse avant la greffe de cellules souches allogéniques. Les faibles niveaux de DC circulantes résultent en grande partie d’une perte de la diversité au niveau des cellules progénitrices CD34+ leucémiques au niveau de la moelle osseuse. Ces cellules progénitrices CD34+ présentent d’ailleurs une capacité réduite à se différencier en DC in vitro. Nous avons trouvé qu’un décompte faible de DC avant une greffe allogénique était associé à une diminution significative de la survie et une augmentation considérable du risque de développer une des complications mortelles. Puisque la reconstitution des DC suite à la greffe est absente, notre étude appuie aussi la thèse que ce sont les cellules DC pré greffe qui sont primordiales dans l'effet du greffon contre leucémie (GVL). Dans ce contexte, notre étude suggère que le compte des DC avant la greffe allogénique pourrait servir de marqueur pronostique pour identifier les patients LMC à risque de développer certaines complications suite à une greffe allogénique.
Resumo:
CD95 (Fas/Apo-1)-mediated apoptosis was shown to occur through two distinct pathways. One involves a direct activation of caspase-3 by large amounts of caspase-8 generated at the DISC (Type I cells). The other is related to the cleavage of Bid by low concentration of caspase-8, leading to the release of cytochrome c from mitochondria and the activation of caspase-3 by the cytochrome c/APAF-1/caspase-9 apoptosome (Type 11 cells). It is also known that the protein synthesis inhibitor cycloheximide (CHX) sensitizes Type I cells to CD95-mediated apoptosis, but it remains contradictory whether this effect also occurs in Type II cells. Here, we show that sub-lethal doses of CHX render both Type I and Type II cells sensitive to the apoptogenic effect of anti-CD95 antibodies but not to chemotherapeutic drugs. Moreover, Bcl-2-positive Type II cells become strongly sensitive to CD95-mediated apoptosis by the addition of CHX to the cell culture. This is not the result of a restraint of the anti-apoptotic effect of Bcl-2 at the mitochondrial level since CHX-treated Type II cells still retain their resistance to chemotherapeutic drugs. Therefore, CHX treatment is granting the CD95-mediated pathway the ability to bypass the mitochondria requirement to apoptosis, much alike to what is observed in Type I cells. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
Over the past 20 y, the hormone melatonin was found to be produced in extrapineal sites, including cells of the immune system. Despite the increasing data regarding the biological effects of melatonin on the regulation of the immune system, the effect of this molecule on T cell survival remains largely unknown. Activation-induced cell death plays a critical role in the maintenance of the homeostasis of the immune system by eliminating self-reactive or chronically stimulated T cells. Because activated T cells not only synthesize melatonin but also respond to it, we investigated whether melatonin could modulate activation-induced cell death. We found that melatonin protects human and murine CD4(+) T cells from apoptosis by inhibiting CD95 ligand mRNA and protein upregulation in response to TCR/CD3 stimulation. This inhibition is a result of the interference with calmodulin/calcineurin activation of NFAT that prevents the translocation of NFAT to the nucleus. Accordingly, melatonin has no effect on T cells transfected with a constitutively active form of NFAT capable of migrating to the nucleus and transactivating target genes in the absence of calcineurin activity. Our results revealed a novel biochemical pathway that regulates the expression of CD95 ligand and potentially other downstream targets of NFAT activation. The Journal of Immunology, 2010, 184: 3487-3494.
Resumo:
Antigen-presenting cells (APCs) control T-cell responses by multiple mechanisms, including the expression of co-stimulatory molecules and the production of cytokines and other mediators that control T-cell proliferation, survival and differentiation. Here, we demonstrate that soluble factor(s) produced by Toll-like receptor (TLR)-activated APCs suppress activation-induced cell death (AICD). This effect was observed in non-stimulated APCs, but it was significantly increased after lipopolysaccharide (LPS) treatment. Using different KO mice, we found that the LPS-induced protective factor is dependent on TLR4/MyD88. We identified the protective factor as prostaglandin E-2(PGE(2)) and showed that both APC-derived supernatants and PGE(2) prevented CD95L upregulation in T cells in response to TCR/CD3 stimulation, thereby avoiding both AICD and activated T cell killing of target macrophages. The PGE(2) receptors, EP2 and EP4, appear to be involved since pharmacological stimulation of these receptors mimics the protective effect on T cells and their respective antagonists interfere with the protection induced by either APCs derived or synthetic PGE(2). Finally, the engagement of EP2 and EP4 synergistically activates protein kinase A (PKA) and exchange protein directly activated by cAMP pathways to prevent AICD. Taken together, these results indicate that APCs can regulate T-cell levels of CD95L by releasing PGE2 in response to LPS through a TLR4/MyD88-dependent pathway, with consequences for both T cell and their own survival.
Resumo:
As leucemias são neoplasias que afetam o sistema hematopoiético e compreendem 2,53% dos casos de câncer relatados. Entre as leucemias, 27,95% correspondem a casos de leucemia mielóide crônica (LMC), que apresenta como marcador genético o cromossomo Philadelphia (Ph). Presente em mais de 80% dos casos, o cromossomo Ph é derivado da translocação t(9;22) (q34;q11), que origina um gene híbrido entre a região 5´ do gene bcr e 3´do gene abl. O produto deste gene é uma proteína Bcr-Abl na qual a atividade reguladora e nuclear do domínio tirosina quinase, originado da proteína Abl, torna-se constitutiva e citoplasmática. Estas mudanças na atividade tirosina quinase afetam diferentes vias de sinalização, com consequências em vários processos celulares como adesão, proliferação e apoptose. Em nível fisiológico, foi mostrado tanto in vitro quanto in vivo que as células hematopoiéticas precursoras Ph+ se diferenciam principalmente em células eritróides. Entretanto, quase 70% dos pacientes com LMC sofrem anemia, mostrando que, as células Ph+ diferenciadas em células eritróides não conseguem amadurecer até hemácias funcionais. Isto faz da LMC um bom modelo para o estudo da diferenciação de células eritróides e suas características, como os fatores que afetam a sintese de hemoglobina (Hb). A linhagem K562 é uma linhagem celular eritroleucêmica Ph+, amplamente utilizada como modelo para estudar drogas com capacidade anti-proliferativa e/ou indutoras da síntese de hemoglobina fetal. Entre estas drogas encontram-se a aclarrubicina (ACLA) e doxorrubicina (DOX) que, embora sejam análogos químicos pertencentes à família das antraciclinas, possuem mecanismos de ação diferentes e ainda não completamente esclarecidos. Neste trabalho, foram investigados vários aspectos da biologia das células K562 durante o tratamento com estas drogas. Foi observado que o tratamento com DOX produz um aumento de tamanho nas células e bloqueio do ciclo celular na fase G2/M, afetando também grandemente a viabilidade celular, com 70% de células mortas no sétimo dia de tratamento. Já durante o tratamento com ACLA a viabilidade, tamanho e ciclo celular foram menos afetados, com aproximadamente 15% de células mortas no sétimo dia de tratamento e um bloqueio transitório do ciclo na fase G1. No entanto, as duas drogas causaram um aumento significativo da síntese de hemoglobina, principalmente DOX que induziu um aumento quase duas vezes maior que o induzido por ACLA. A análise da expressão gênica realizada através da técnica de differential display mostrou várias bandas diferencialmente representadas e com diversas cinéticas de expressão, apresentando semelhanças e diferenças quando são comparados os dois tratamentos ou células tratadas e controle. Destas bandas, 26 estão sequenciadas mostrando genes envolvidos em vários processos celulares como dano do DNA, resistência a drogas, processamento do RNA e codificação de proteinas relacionadas com ferro. Das bandas sequenciadas, 7 foram validadas por RT-PCR (ndrg1, erk2, nf2l2, atp6ap1, rfc1, phf20 e zkscan) sendo observado um aumento na sua expressão durante o tratamento, com exceção de ndrg1 para o qual a expressão foi induzida em vez de aumentada e nf2l2 onde a diferença com o controle foi pequena e não permitiu validar este gene como diferencialmente expresso. Com o objetivo de procurar por mecanismos comuns entre os vários indutores da síntese de hemoglobina em células K562, estes genes foram também analisados durante o tratamento destas células com os indutores hidroxiuréia e dGTP. Além de induzirem a expressão de hemoglobina, os dois tratamentos provocaram um aumento no tamanho das células tratadas e um bloqueio no ciclo celular na fase S. Visando futuros trabalhos envolvendo os genes diferencialmente expressos, foi ainda otimizado um sistema de transferência gênica por eletroporação. Para isto foram testados varios parâmetros como campo elétrico, resistência, capacitância, meios de eletroporação, manipulação das células e uso de inibidores de DNAses. Como resultado, foi alcançado com o eletroporador padrão uma eficiência de transfecção de 81%, similar àquela alcançada pelo nucleoporator (eletroporador de última geração). As condições estabelecidas foram 750 V/cm, resistência infinita, 500 μF, meio RPMI1640, centrifugação e sulfato de zinco pós-pulso. A relação das antraciclinas e a hidroxiuréia, assim como de outros indutores da síntese de hemoglobina, com o ferro intracelular, juntamente com a diferença na expressão, durante o tratamento, de genes afetados direta ou potencialmente pela não disponibilidade de ferro intracelular, nos permitiu gerar uma hipótese para a via de sinalização que leva à síntese de hemoglobina. Nesta, sinais de falta ou não disponibilidade de ferro nas células ativariam a maquinaria celular para a captação e internalização do ferro extra-celular, simultaneamente com síntese de proteínas que utilizam o ferro para realizar as suas funções biológicas, entre elas a hemoglobina. Do mesmo modo, propomos a via de sinalização do ferro como um alvo potencialmente afetado por drogas indutoras da síntese de hemoglobina, como as antraciclinas, cujos alvos são ainda pouco conhecidos. Contudo, mais genes desta via de sinalização, bem como outros indutores, deveram ser estudados para saber se a síntese de hemoglobina pode ser induzida por drogas mais específicas e com menos efeitos colaterais que aquelas usadas atualmente para o tratamento de câncer e outras doenças.
Resumo:
In this study, a BCR-ABL expressing human chronic myelogenous leukaemia cell line (K562) was used to investigate the antitumoral potential of a novel lectin (CvL) purified from the marine sponge Cliona varians. CvL inhibited the growth of K562 cells with an IC50 value of 70 g/ml, but was ineffective to normal human peripheral blood lymphocytes in the same range of concentrations tested (180 g/ml). Cell death occurred after 72 h of exposure to the lectin and with sign of apoptosis as analysed by DAPI staining. Investigation of the possible effectors of this process showed that cell death occurred in the presence of Bcl-2 and Bax expression, and involved a caspase-independent pathway. Confocal fluorescence microscopy indicated a major role for the lysosomal protease cathepsin B in mediating cell death. Accordingly, pre-incubation of K562 cells with the cathepsin inhibitor L-trans-epoxysuccinyl-L-leucylamido-(4-guanidino)butane (E-64) abolished the cytotoxic effect of CvL. Furthermore, we found upregulation of tumor necrosis factor receptor 1 (TNFR1) and down-modulation of p65 subunit of nuclear factor kappa B (NFB) expression in CvL-treated cells. These effects were accompanied by increased levels of p21 and downmodulation of pRb, suggesting that CvL is capable of cell cycle arrest. Collectively, these findings suggest that cathepsin B acts as death mediator in CvL-induced cytotoxicity possibly in a still uncharacterized connection with the membrane death receptor pathway
Resumo:
Investigation of the efficacy of allogeneic hematopoietic stem cell transplantation (allo-HSCT) in chronic myeloid leukemia patients is essential to predict prognosis and survival. In 20 patients treated at the Bone Marrow Transplantation Unit of São José do Rio Preto (São Paulo, Brazil), we used fluorescence in situ hybridization (FISH) to investigate the frequency of cells with BCR/ABL rearrangement at diagnosis and at distinct intervals after allo-HSCT until complete cytogenetic remission (CCR). We investigated the disease-free survival, overall survival in 3 years and transplant-related mortality rates, too. Bone marrow samples were collected at 1, 2, 3, 4, 6, 12, and 24 months after transplantation and additional intervals as necessary. Success rate of the FISH analyses was 100%. CCR was achieved in 75% of the patients, within on average of 3.9 months; 45% patients showed CCR within 60 days after HSCT. After 3 years of the allo-HSCT, overall survival rate was 60%, disease-free survival was 50% and the transplant-related mortality rate was 40%. The study demonstrated that the BCR-ABL FISH assay is useful for follow-up of chronic myeloid leukemia patients after HSCT and that the clinical outcome parameters in our patient cohort were similar to those described for other bone marrow transplantation units. ©FUNPEC-RP.
Resumo:
ABSTRACT: INTRODUCTION: In Brazil, patients with chronic myeloid leukemia (CML) in the chronic phase were not given first-line imatinib treatment until 2008. Therefore, there was a long period of time between diagnosis and the initiation of imatinib therapy for many patients. This study aims to compare the major molecular remission (MMR) rates of early versus late imatinib therapy in chronic phase CML patients. METHODS: Between May 2002 and November 2007, 44 patients with chronic phase CML were treated with second-line imatinib therapy at the Hematology Unit of the Ophir Loyola Hospital (Belém, Pará, Brazil). BCR-ABL transcript levels were measured at approximately six-month intervals using quantitative polymerase chain reaction. RESULTS: The early treatment group presented a 60% probability of achieving MMR, while the probability for those patients who received late treatment was 40%. The probability of either not achieving MMR within one year of the initiation of imatinib therapy or losing MMR was higher in patients who received late treatment (79%), compared with patients who received early treatment (21%, odds ratio=5.75, P=0.012). The probability of maintaining MMR at 30 months of treatment was 80% in the early treatment group and 44% in the late treatment group (P=0.0005). CONCLUSIONS: For CML patients in the chronic phase who were treated with second-line imatinib therapy, the probability of achieving and maintaining MMR was higher in patients who received early treatment compared with those patients for whom the time interval between diagnosis and initiation of imatinib therapy was longer than one year.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this retrospective study we evaluated the pretherapeutic mRNA expression of the hOCT1 (human organic cation transporter 1) gene in patients with chronic-phase (CP) chronic myeloid leukemia (CML) who varied in terms of their response to imatinib (IM). hOCT1 mRNA was quantified by real-time PCR. Patients were classified as expressing either high (n = 44) or low hOCT1 mRNA (n = 44). The complete cytogenetic response rates observed at 6, 12 and 18 months were 47.7, 84.1 and 91%, respectively, in patients with high hOCT1 mRNA and 47.5, 81.8 and 86.3%, respectively, in patients with low hOCT1 transcripts. The major molecular response rates were not significantly different between patients with high and low hOCT1 mRNA after 6 months of therapy (22.7 vs. 9.1%; p = 0.07), but they were significantly different after 12 months (54.5 vs. 31.8%; p = 0.026) and 18 months (77.2 vs. 56.8%; p = 0.034). Complete molecular responses were observed in 5 patients with low and 17 patients with high hOCT1 mRNA (p = 0.003). The 5-year event-free and overall survival analyses revealed no significant differences between the groups. These data imply that knowledge of the pretherapeutic level of hOCT1 could be a useful marker to predict IM therapy outcome in treatment-naive CP CML patients. Copyright (C) 2012 S. Karger AG, Basel
Resumo:
Despite the beneficial effects of imatinib mesylate, some patients may either not respond or respond suboptimally. Here, we report two chronic myelogenous leukemia patients; one had a suboptimal response according to European LeukemiaNet criteria (a major molecular response was not achieved after 18 months of standard-dose imatinib therapy) and the other had failure with a standard dose of imatinib. At the time of the suboptimal response in patient 1 and the failure in patient 2, we were able to detect the F359I mutation in the BCR-ABL tyrosine kinase domain using DNA sequencing in both patients. Therefore, it was decided to change the therapeutic regimen to dasatinib at a dose of 100 mg once daily in both patients. This change resulted in the achievement of complete cytogenetic remission in patient 1 after 4 months and a major molecular response within 2 and 3 months in both patients. Detection of the F359I mutation in our two cases likely explains the suboptimal response to imatinib in case 1 and the failure in case 2. This implies that in such cases dasatinib should be considered to effectively suppress the mutated clones. Copyright (C) 2011 S. Karger AG, Basel
Resumo:
The Ph chromosome is the most frequent cytogenetic aberration associated with adult ALL and it represents the single most significant adverse prognostic marker. Despite imatinib has led to significant improvements in the treatment of patients with Ph+ ALL, in the majority of cases resistance developed quickly and disease progressed. Some mechanisms of resistance have been widely described but the full knowledge of contributing factors, driving both the disease and resistance, remains to be defined. The observation of rapid development of lymphoblastic leukemia in mice expressing altered Ikaros (Ik) isoforms represented the background of this study. Ikaros is a zinc finger transcription factor required for normal hemopoietic differentiation and proliferation, particularly in the lymphoid lineages. By means of alternative splicing, Ikaros encodes several proteins that differ in their abilities to bind to a consensus DNA-binding site. Shorter, DNA nonbinding isoforms exert a dominant negative effect, inhibiting the ability of longer heterodimer partners to bind DNA. The differential expression pattern of Ik isoforms in Ph+ ALL patients was analyzed in order to determine if molecular abnormalities involving the Ik gene could associate with resistance to imatinib and dasatinib. Bone marrow and peripheral blood samples from 46 adult patients (median age 55 yrs, 18-76) with Ph+ ALL at diagnosis and during treatment with imatinib (16 pts) or dasatinib (30 pts) were collected. We set up a fast, high-throughput method based on capillary electrophoresis technology to detect and quantify splice variants. 41% Ph+ ALL patients expressed high levels of the non DNA-binding dominant negative Ik6 isoform lacking critical N-terminal zinc-fingers which display abnormal subcellular compartmentalization pattern. Nuclear extracts from patients expressed Ik6 failed to bind DNA in mobility shift assay using a DNA probe containing an Ikaros-specific DNA binding sequence. In 59% Ph+ ALL patients there was the coexistence in the same PCR sample and at the same time of many splice variants corresponded to Ik1, Ik2, Ik4, Ik4A, Ik5A, Ik6, Ik6 and Ik8 isoforms. In these patients aberrant full-length Ikaros isoforms in Ph+ ALL characterized by a 60-bp insertion immediately downstream of exon 3 and a recurring 30-bp in-frame deletion at the end of exon 7 involving most frequently the Ik2, Ik4 isoforms were also identified. Both the insertion and deletion were due to the selection of alternative splice donor and acceptor sites. The molecular monitoring of minimal residual disease showed for the first time in vivo that the Ik6 expression strongly correlated with the BCR-ABL transcript levels suggesting that this alteration could depend on the Bcr-Abl activity. Patient-derived leukaemia cells expressed dominant-negative Ik6 at diagnosis and at the time of relapse, but never during remission. In order to mechanistically demonstrated whether in vitro the overexpression of Ik6 impairs the response to tyrosine kinase inhibitors (TKIs) and contributes to resistance, an imatinib-sensitive Ik6-negative Ph+ ALL cell line (SUP-B15) was transfected with the complete Ik6 DNA coding sequence. The expression of Ik6 strongly increased proliferation and inhibited apoptosis in TKI sensitive cells establishing a previously unknown link between specific molecular defects that involve the Ikaros gene and the resistance to TKIs in Ph+ ALL patients. Amplification and genomic sequence analysis of the exon splice junction regions showed the presence of 2 single nucleotide polymorphisms (SNPs): rs10251980 [A/G] in the exon2/3 splice junction and of rs10262731 [A/G] in the exon 7/8 splice junction in 50% and 36% of patients, respectively. A variant of the rs11329346 [-/C], in 16% of patients was also found. Other two different single nucleotide substitutions not recognized as SNP were observed. Some mutations were predicted by computational analyses (RESCUE approach) to alter cis-splicing elements. In conclusion, these findings demonstrated that the post-transcriptional regulation of alternative splicing of Ikaros gene is defective in the majority of Ph+ ALL patients treated with TKIs. The overexpression of Ik6 blocking B-cell differentiation could contribute to resistance opening a time frame, during which leukaemia cells acquire secondary transforming events that confer definitive resistance to imatinib and dasatinib.