921 resultados para Bayesian nonparametric
Resumo:
The log-ratio methodology makes available powerful tools for analyzing compositionaldata. Nevertheless, the use of this methodology is only possible for those data setswithout null values. Consequently, in those data sets where the zeros are present, aprevious treatment becomes necessary. Last advances in the treatment of compositionalzeros have been centered especially in the zeros of structural nature and in the roundedzeros. These tools do not contemplate the particular case of count compositional datasets with null values. In this work we deal with \count zeros" and we introduce atreatment based on a mixed Bayesian-multiplicative estimation. We use the Dirichletprobability distribution as a prior and we estimate the posterior probabilities. Then weapply a multiplicative modi¯cation for the non-zero values. We present a case studywhere this new methodology is applied.Key words: count data, multiplicative replacement, composition, log-ratio analysis
Resumo:
BACKGROUND The objective of this research was to evaluate data from a randomized clinical trial that tested injectable diacetylmorphine (DAM) and oral methadone (MMT) for substitution treatment, using a multi-domain dichotomous index, with a Bayesian approach. METHODS Sixty two long-term, socially-excluded heroin injectors, not benefiting from available treatments were randomized to receive either DAM or MMT for 9 months in Granada, Spain. Completers were 44 and data at the end of the study period was obtained for 50. Participants were determined to be responders or non responders using a multi-domain outcome index accounting for their physical and mental health and psychosocial integration, used in a previous trial. Data was analyzed with Bayesian methods, using information from a similar study conducted in The Netherlands to select a priori distributions. On adding the data from the present study to update the a priori information, the distribution of the difference in response rates were obtained and used to build credibility intervals and relevant probability computations. RESULTS In the experimental group (n = 27), the rate of responders to treatment was 70.4% (95% CI 53.287.6), and in the control group (n = 23), it was 34.8% (95% CI 15.354.3). The probability of success in the experimental group using the a posteriori distributions was higher after a proper sensitivity analysis. Almost the whole distribution of the rates difference (the one for diacetylmorphine minus methadone) was located to the right of the zero, indicating the superiority of the experimental treatment. CONCLUSION The present analysis suggests a clinical superiority of injectable diacetylmorphine compared to oral methadone in the treatment of severely affected heroin injectors not benefiting sufficiently from the available treatments. TRIAL REGISTRATION Current Controlled Trials ISRCTN52023186.
Resumo:
This paper presents and discusses the use of Bayesian procedures - introduced through the use of Bayesian networks in Part I of this series of papers - for 'learning' probabilities from data. The discussion will relate to a set of real data on characteristics of black toners commonly used in printing and copying devices. Particular attention is drawn to the incorporation of the proposed procedures as an integral part in probabilistic inference schemes (notably in the form of Bayesian networks) that are intended to address uncertainties related to particular propositions of interest (e.g., whether or not a sample originates from a particular source). The conceptual tenets of the proposed methodologies are presented along with aspects of their practical implementation using currently available Bayesian network software.
Resumo:
Calculating explicit closed form solutions of Cournot models where firms have private information about their costs is, in general, very cumbersome. Most authors consider therefore linear demands and constant marginal costs. However, within this framework, the nonnegativity constraint on prices (and quantities) has been ignored or not properly dealt with and the correct calculation of all Bayesian Nash equilibria is more complicated than expected. Moreover, multiple symmetric and interior Bayesianf equilibria may exist for an open set of parameters. The reason for this is that linear demand is not really linear, since there is a kink at zero price: the general ''linear'' inverse demand function is P (Q) = max{a - bQ, 0} rather than P (Q) = a - bQ.
Resumo:
Ground-penetrating radar (GPR) has the potential to provide valuable information on hydrological properties of the vadose zone because of their strong sensitivity to soil water content. In particular, recent evidence has suggested that the stochastic inversion of crosshole GPR data within a coupled geophysical-hydrological framework may allow for effective estimation of subsurface van-Genuchten-Mualem (VGM) parameters and their corresponding uncertainties. An important and still unresolved issue, however, is how to best integrate GPR data into a stochastic inversion in order to estimate the VGM parameters and their uncertainties, thus improving hydrological predictions. Recognizing the importance of this issue, the aim of the research presented in this thesis was to first introduce a fully Bayesian inversion called Markov-chain-Monte-carlo (MCMC) strategy to perform the stochastic inversion of steady-state GPR data to estimate the VGM parameters and their uncertainties. Within this study, the choice of the prior parameter probability distributions from which potential model configurations are drawn and tested against observed data was also investigated. Analysis of both synthetic and field data collected at the Eggborough (UK) site indicates that the geophysical data alone contain valuable information regarding the VGM parameters. However, significantly better results are obtained when these data are combined with a realistic, informative prior. A subsequent study explore in detail the dynamic infiltration case, specifically to what extent time-lapse ZOP GPR data, collected during a forced infiltration experiment at the Arrenaes field site (Denmark), can help to quantify VGM parameters and their uncertainties using the MCMC inversion strategy. The findings indicate that the stochastic inversion of time-lapse GPR data does indeed allow for a substantial refinement in the inferred posterior VGM parameter distributions. In turn, this significantly improves knowledge of the hydraulic properties, which are required to predict hydraulic behaviour. Finally, another aspect that needed to be addressed involved the comparison of time-lapse GPR data collected under different infiltration conditions (i.e., natural loading and forced infiltration conditions) to estimate the VGM parameters using the MCMC inversion strategy. The results show that for the synthetic example, considering data collected during a forced infiltration test helps to better refine soil hydraulic properties compared to data collected under natural infiltration conditions. When investigating data collected at the Arrenaes field site, further complications arised due to model error and showed the importance of also including a rigorous analysis of the propagation of model error with time and depth when considering time-lapse data. Although the efforts in this thesis were focused on GPR data, the corresponding findings are likely to have general applicability to other types of geophysical data and field environments. Moreover, the obtained results allow to have confidence for future developments in integration of geophysical data with stochastic inversions to improve the characterization of the unsaturated zone but also reveal important issues linked with stochastic inversions, namely model errors, that should definitely be addressed in future research.
Resumo:
Individuals sampled in hybrid zones are usually analysed according to their sampling locality, morphology, behaviour or karyotype. But the increasing availability of genetic information more and more favours its use for individual sorting purposes and numerous assignment methods based on the genetic composition of individuals have been developed. The shrews of the Sorex araneus group offer good opportunities to test the genetic assignment on individuals identified by their karyotype. Here we explored the potential and efficiency of a Bayesian assignment method combined or not with a reference dataset to study admixture and individual assignment in the difficult context of two hybrid zones between karyotypic species of the Sorex araneus group. As a whole, we assigned more than 80% of the individuals to their respective karyotypic categories (i.e. 'pure' species or hybrids). This assignment level is comparable to what was obtained for the same species away from hybrid zones. Additionally, we showed that the assignment result for several individuals was strongly affected by the inclusion or not of a reference dataset. This highlights the importance of such comparisons when analysing hybrid zones. Finally, differences between the admixture levels detected in both hybrid zones support the hypothesis of an impact of chromosomal rearrangements on gene flow.
Resumo:
Part I of this series of articles focused on the construction of graphical probabilistic inference procedures, at various levels of detail, for assessing the evidential value of gunshot residue (GSR) particle evidence. The proposed models - in the form of Bayesian networks - address the issues of background presence of GSR particles, analytical performance (i.e., the efficiency of evidence searching and analysis procedures) and contamination. The use and practical implementation of Bayesian networks for case pre-assessment is also discussed. This paper, Part II, concentrates on Bayesian parameter estimation. This topic complements Part I in that it offers means for producing estimates useable for the numerical specification of the proposed probabilistic graphical models. Bayesian estimation procedures are given a primary focus of attention because they allow the scientist to combine (his/her) prior knowledge about the problem of interest with newly acquired experimental data. The present paper also considers further topics such as the sensitivity of the likelihood ratio due to uncertainty in parameters and the study of likelihood ratio values obtained for members of particular populations (e.g., individuals with or without exposure to GSR).
Resumo:
Almost 30 years ago, Bayesian networks (BNs) were developed in the field of artificial intelligence as a framework that should assist researchers and practitioners in applying the theory of probability to inference problems of more substantive size and, thus, to more realistic and practical problems. Since the late 1980s, Bayesian networks have also attracted researchers in forensic science and this tendency has considerably intensified throughout the last decade. This review article provides an overview of the scientific literature that describes research on Bayesian networks as a tool that can be used to study, develop and implement probabilistic procedures for evaluating the probative value of particular items of scientific evidence in forensic science. Primary attention is drawn here to evaluative issues that pertain to forensic DNA profiling evidence because this is one of the main categories of evidence whose assessment has been studied through Bayesian networks. The scope of topics is large and includes almost any aspect that relates to forensic DNA profiling. Typical examples are inference of source (or, 'criminal identification'), relatedness testing, database searching and special trace evidence evaluation (such as mixed DNA stains or stains with low quantities of DNA). The perspective of the review presented here is not exclusively restricted to DNA evidence, but also includes relevant references and discussion on both, the concept of Bayesian networks as well as its general usage in legal sciences as one among several different graphical approaches to evidence evaluation.
Resumo:
Testosterone abuse is conventionally assessed by the urinary testosterone/epitestosterone (T/E) ratio, levels above 4.0 being considered suspicious. A deletion polymorphism in the gene coding for UGT2B17 is strongly associated with reduced testosterone glucuronide (TG) levels in urine. Many of the individuals devoid of the gene would not reach a T/E ratio of 4.0 after testosterone intake. Future test programs will most likely shift from population based- to individual-based T/E cut-off ratios using Bayesian inference. A longitudinal analysis is dependent on an individual's true negative baseline T/E ratio. The aim was to investigate whether it is possible to increase the sensitivity and specificity of the T/E test by addition of UGT2B17 genotype information in a Bayesian framework. A single intramuscular dose of 500mg testosterone enanthate was given to 55 healthy male volunteers with either two, one or no allele (ins/ins, ins/del or del/del) of the UGT2B17 gene. Urinary excretion of TG and the T/E ratio was measured during 15 days. The Bayesian analysis was conducted to calculate the individual T/E cut-off ratio. When adding the genotype information, the program returned lower individual cut-off ratios in all del/del subjects increasing the sensitivity of the test considerably. It will be difficult, if not impossible, to discriminate between a true negative baseline T/E value and a false negative one without knowledge of the UGT2B17 genotype. UGT2B17 genotype information is crucial, both to decide which initial cut-off ratio to use for an individual, and for increasing the sensitivity of the Bayesian analysis.
Resumo:
Condence intervals in econometric time series regressions suffer fromnotorious coverage problems. This is especially true when the dependencein the data is noticeable and sample sizes are small to moderate, as isoften the case in empirical studies. This paper suggests using thestudentized block bootstrap and discusses practical issues, such as thechoice of the block size. A particular data-dependent method is proposedto automate the method. As a side note, it is pointed out that symmetricconfidence intervals are preferred over equal-tailed ones, since theyexhibit improved coverage accuracy. The improvements in small sampleperformance are supported by a simulation study.
Resumo:
How much would output increase if underdeveloped economies were toincrease their levels of schooling? We contribute to the development accounting literature by describing a non-parametric upper bound on theincrease in output that can be generated by more schooling. The advantage of our approach is that the upper bound is valid for any number ofschooling levels with arbitrary patterns of substitution/complementarity.Another advantage is that the upper bound is robust to certain forms ofendogenous technology response to changes in schooling. We also quantify the upper bound for all economies with the necessary data, compareour results with the standard development accounting approach, andprovide an update on the results using the standard approach for a largesample of countries.
Resumo:
The forensic two-trace problem is a perplexing inference problem introduced by Evett (J Forensic Sci Soc 27:375-381, 1987). Different possible ways of wording the competing pair of propositions (i.e., one proposition advanced by the prosecution and one proposition advanced by the defence) led to different quantifications of the value of the evidence (Meester and Sjerps in Biometrics 59:727-732, 2003). Here, we re-examine this scenario with the aim of clarifying the interrelationships that exist between the different solutions, and in this way, produce a global vision of the problem. We propose to investigate the different expressions for evaluating the value of the evidence by using a graphical approach, i.e. Bayesian networks, to model the rationale behind each of the proposed solutions and the assumptions made on the unknown parameters in this problem.
Resumo:
We introduce several exact nonparametric tests for finite sample multivariatelinear regressions, and compare their powers. This fills an important gap inthe literature where the only known nonparametric tests are either asymptotic,or assume one covariate only.