675 resultados para Baxter, Rhoda


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim: To quantify the consequences of major threats to biodiversity, such as climate and land-use change, it is important to use explicit measures of species persistence, such as extinction risk. The extinction risk of metapopulations can be approximated through simple models, providing a regional snapshot of the extinction probability of a species. We evaluated the extinction risk of three species under different climate change scenarios in three different regions of the Mexican cloud forest, a highly fragmented habitat that is particularly vulnerable to climate change. Location: Cloud forests in Mexico. Methods: Using Maxent, we estimated the potential distribution of cloud forest for three different time horizons (2030, 2050 and 2080) and their overlap with protected areas. Then, we calculated the extinction risk of three contrasting vertebrate species for two scenarios: (1) climate change only (all suitable areas of cloud forest through time) and (2) climate and land-use change (only suitable areas within a currently protected area), using an explicit patch-occupancy approximation model and calculating the joint probability of all populations becoming extinct when the number of remaining patches was less than five. Results: Our results show that the extent of environmentally suitable areas for cloud forest in Mexico will sharply decline in the next 70 years. We discovered that if all habitat outside protected areas is transformed, then only species with small area requirements are likely to persist. With habitat loss through climate change only, high dispersal rates are sufficient for persistence, but this requires protection of all remaining cloud forest areas. Main conclusions: Even if high dispersal rates mitigate the extinction risk of species due to climate change, the synergistic impacts of changing climate and land use further threaten the persistence of species with higher area requirements. Our approach for assessing the impacts of threats on biodiversity is particularly useful when there is little time or data for detailed population viability analyses. © 2013 John Wiley & Sons Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The quality of environmental decisions are gauged according to the management objectives of a conservation project. Management objectives are generally about maximising some quantifiable measure of system benefit, for instance population growth rate. They can also be defined in terms of learning about the system in question, in such a case actions would be chosen that maximise knowledge gain, for instance in experimental management sites. Learning about a system can also take place when managing practically. The adaptive management framework (Walters 1986) formally acknowledges this fact by evaluating learning in terms of how it will improve management of the system and therefore future system benefit. This is taken into account when ranking actions using stochastic dynamic programming (SDP). However, the benefits of any management action lie on a spectrum from pure system benefit, when there is nothing to be learned about the system, to pure knowledge gain. The current adaptive management framework does not permit management objectives to evaluate actions over the full range of this spectrum. By evaluating knowledge gain in units distinct to future system benefit this whole spectrum of management objectives can be unlocked. This paper outlines six decision making policies that differ across the spectrum of pure system benefit through to pure learning. The extensions to adaptive management presented allow specification of the relative importance of learning compared to system benefit in management objectives. Such an extension means practitioners can be more specific in the construction of conservation project objectives and be able to create policies for experimental management sites in the same framework as practical management sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. In conservation decision-making, we operate within the confines of limited funding. Furthermore, we often assume particular relationships between management impact and our investment in management. The structure of these relationships, however, is rarely known with certainty - there is model uncertainty. We investigate how these two fundamentally limiting factors in conservation management, money and knowledge, impact optimal decision-making. 2. We use information-gap decision theory to find strategies for maximizing the number of extant subpopulations of a threatened species that are most immune to failure due to model uncertainty. We thus find a robust framework for exploring optimal decision-making. 3. The performance of every strategy decreases as model uncertainty increases. 4. The strategy most robust to model uncertainty depends not only on what performance is perceived to be acceptable but also on available funding and the time horizon over which extinction is considered. 5. Synthesis and applications. We investigate the impact of model uncertainty on robust decision-making in conservation and how this is affected by available conservation funding. We show that subpopulation triage can be a natural consequence of robust decision-making. We highlight the need for managers to consider triage not as merely giving up, but as a tool for ensuring species persistence in light of the urgency of most conservation requirements, uncertainty and the poor state of conservation funding. We illustrate this theory by a specific application to allocation of funding to reduce poaching impact on the Sumatran tiger Panthera tigris sumatrae in Kerinci Seblat National Park. © 2008 The Authors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The quality of environmental decisions should be gauged according to managers' objectives. Management objectives generally seek to maximize quantifiable measures of system benefit, for instance population growth rate. Reaching these goals often requires a certain degree of learning about the system. Learning can occur by using management action in combination with a monitoring system. Furthermore, actions can be chosen strategically to obtain specific kinds of information. Formal decision making tools can choose actions to favor such learning in two ways: implicitly via the optimization algorithm that is used when there is a management objective (for instance, when using adaptive management), or explicitly by quantifying knowledge and using it as the fundamental project objective, an approach new to conservation.This paper outlines three conservation project objectives - a pure management objective, a pure learning objective, and an objective that is a weighted mixture of these two. We use eight optimization algorithms to choose actions that meet project objectives and illustrate them in a simulated conservation project. The algorithms provide a taxonomy of decision making tools in conservation management when there is uncertainty surrounding competing models of system function. The algorithms build upon each other such that their differences are highlighted and practitioners may see where their decision making tools can be improved. © 2010 Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Moose populations are managed for sustainable yield balanced against costs caused by damage to forestry or agriculture and collisions with vehicles. Optimal harvests can be calculated based on a structured population model driven by data on abundance and the composition of bulls, cows, and calves obtained by aerial-survey monitoring during winter. Quotas are established by the respective government agency and licenses are issued to hunters to harvest an animal of specified age or sex during the following autumn. Because the cost of aerial monitoring is high, we use a Management Strategy Evaluation to evaluate the costs and benefits of periodic aerial surveys in the context of moose management. Our on-the-fly "seat of your pants" alternative to independent monitoring is management based solely on the kill of moose by hunters, which is usually sufficient to alert the manager to declines in moose abundance that warrant adjustments to harvest strategies. Harvests are relatively cheap to monitor; therefore, data can be obtained each year facilitating annual adjustments to quotas. Other sources of "cheap" monitoring data such as records of the number of moose seen by hunters while hunting also might be obtained, and may provide further useful insight into population abundance, structure and health. Because conservation dollars are usually limited, the high cost of aerial surveys is difficult to justify when alternative methods exist. © 2012 Elsevier Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is a concern that high densities of elephants in southern Africa could lead to the overall reduction of other forms of biodiversity. We present a grid-based model of elephant-savanna dynamics, which differs from previous elephant-vegetation models by accounting for woody plant demographics, tree-grass interactions, stochastic environmental variables (fire and rainfall), and spatial contagion of fire and tree recruitment. The model projects changes in height structure and spatial pattern of trees over periods of centuries. The vegetation component of the model produces long-term tree-grass coexistence, and the emergent fire frequencies match those reported for southern African savannas. Including elephants in the savanna model had the expected effect of reducing woody plant cover, mainly via increased adult tree mortality, although at an elephant density of 1.0 elephant/km2, woody plants still persisted for over a century. We tested three different scenarios in addition to our default assumptions. (1) Reducing mortality of adult trees after elephant use, mimicking a more browsing-tolerant tree species, mitigated the detrimental effect of elephants on the woody population. (2) Coupling germination success (increased seedling recruitment) to elephant browsing further increased tree persistence, and (3) a faster growing woody component allowed some woody plant persistence for at least a century at a density of 3 elephants/km2. Quantitative models of the kind presented here provide a valuable tool for exploring the consequences of management decisions involving the manipulation of elephant population densities. © 2005 by the Ecological Society of America.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The gross under-resourcing of conservation endeavours has placed an increasing emphasis on spending accountability. Increased accountability has led to monitoring forming a central element of conservation programs. Although there is little doubt that information obtained from monitoring can improve management of biodiversity, the cost (in time and/or money) of gaining this knowledge is rarely considered when making decisions about allocation of resources to monitoring. We present a simple framework allowing managers and policy advisors to make decisions about when to invest in monitoring to improve management. © 2010 Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Money is often a limiting factor in conservation, and attempting to conserve endangered species can be costly. Consequently, a framework for optimizing fiscally constrained conservation decisions for a single species is needed. In this paper we find the optimal budget allocation among isolated subpopulations of a threatened species to minimize local extinction probability. We solve the problem using stochastic dynamic programming, derive a useful and simple alternative guideline for allocating funds, and test its performance using forward simulation. The model considers subpopulations that persist in habitat patches of differing quality, which in our model is reflected in different relationships between money invested and extinction risk. We discover that, in most cases, subpopulations that are less efficient to manage should receive more money than those that are more efficient to manage, due to higher investment needed to reduce extinction risk. Our simple investment guideline performs almost as well as the exact optimal strategy. We illustrate our approach with a case study of the management of the Sumatran tiger, Panthera tigris sumatrae, in Kerinci Seblat National Park (KSNP), Indonesia. We find that different budgets should be allocated to the separate tiger subpopulations in KSNP. The subpopulation that is not at risk of extinction does not require any management investment. Based on the combination of risks of extinction and habitat quality, the optimal allocation for these particular tiger subpopulations is an unusual case: subpopulations that occur in higher-quality habitat (more efficient to manage) should receive more funds than the remaining subpopulation that is in lower-quality habitat. Because the yearly budget allocated to the KSNP for tiger conservation is small, to guarantee the persistence of all the subpopulations that are currently under threat we need to prioritize those that are easier to save. When allocating resources among subpopulations of a threatened species, the combined effects of differences in habitat quality, cost of action, and current subpopulation probability of extinction need to be integrated. We provide a useful guideline for allocating resources among isolated subpopulations of any threatened species. © 2010 by the Ecological Society of America.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The notion of being sure that you have completely eradicated an invasive species is fanciful because of imperfect detection and persistent seed banks. Eradication is commonly declared either on an ad hoc basis, on notions of seed bank longevity, or on setting arbitrary thresholds of 1% or 5% confidence that the species is not present. Rather than declaring eradication at some arbitrary level of confidence, we take an economic approach in which we stop looking when the expected costs outweigh the expected benefits. We develop theory that determines the number of years of absent surveys required to minimize the net expected cost. Given detection of a species is imperfect, the optimal stopping time is a trade-off between the cost of continued surveying and the cost of escape and damage if eradication is declared too soon. A simple rule of thumb compares well to the exact optimal solution using stochastic dynamic programming. Application of the approach to the eradication programme of Helenium amarum reveals that the actual stopping time was a precautionary one given the ranges for each parameter. © 2006 Blackwell Publishing Ltd/CNRS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Strategic searching for invasive pests presents a formidable challenge for conservation managers. Limited funding can necessitate choosing between surveying many sites cursorily, or focussing intensively on fewer sites. While existing knowledge may help to target more likely sites, e.g. with species distribution models (maps), this knowledge is not flawless and improving it also requires management investment. 2.In a rare example of trading-off action against knowledge gain, we combine search coverage and accuracy, and its future improvement, within a single optimisation framework. More specifically we examine under which circumstances managers should adopt one of two search-and-control strategies (cursory or focussed), and when they should divert funding to improving knowledge, making better predictive maps that benefit future searches. 3.We use a family of Receiver Operating Characteristic curves to reflect the quality of maps that direct search efforts. We demonstrate our framework by linking these to a logistic model of invasive spread such as that for the red imported fire ant Solenopsis invicta in south-east Queensland, Australia. 4.Cursory widespread searching is only optimal if the pest is already widespread or knowledge is poor, otherwise focussed searching exploiting the map is preferable. For longer management timeframes, eradication is more likely if funds are initially devoted to improving knowledge, even if this results in a short-term explosion of the pest population. 5.Synthesis and applications. By combining trade-offs between knowledge acquisition and utilization, managers can better focus - and justify - their spending to achieve optimal results in invasive control efforts. This framework can improve the efficiency of any ecological management that relies on predicting occurrence. © 2010 The Authors. Journal of Applied Ecology © 2010 British Ecological Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Approximately 90% of the original woodlands of the Mount Lofty Ranges of South Australia has been cleared, modified or fragmented, most severely in the last 60 years, and affecting the avifauna dependent on native vegetation. This study identifies which woodland-dependent species are still declining in two different habitats, Pink GumBlue Gum woodland and Stringybark woodland. We analyse the Mount Lofty Ranges Woodland Bird Long-Term Monitoring Dataset for 1999-2007, to look for changes in abundance of 59 species. We use logistic regression of prevalence on lists in a Bayesian framework, and List Length Analysis to control for variation in detectability. Compared with Reporting Rate Analysis, a more traditional approach, List Length Analysis provides tighter confidence intervals by accounting for changing detectability. Several common species were declining significantly. Increasers were generally large-bodied generalists. Many birds have already disappeared from this modified and naturally isolated woodland island, and our results suggest that more specialist insectivores are likely to follow. The Mount Lofty Ranges can be regarded as a 'canary landscape' for temperate woodlands elsewhere in Australia without immediate action their bird communities are likely to follow the trajectory of the Mount Lofty Ranges avifauna. Alternatively, with extensive habitat restoration and management, we could avoid paying the extinction debt. © Royal Australasian Ornithologists Union 2011.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Successful biodiversity conservation requires safeguarding viable populations of species. To work with this challenge Sweden has introduced a concept of Action Plans, which focus on the recovery of one or more species; while keeping in mind the philosophy of addressing ecosystems in a more comprehensive way, following the umbrella concept. In this paper we investigate the implementationprocess of the ActionPlanfor one umbrella species, the White-backed Woodpecker (WBW) Dendrocopos leucotos. We describe the plan's organisation and goals, and investigate its implementation and accomplishment of particular targets, based on interviewing and surveying the key actors. The achievement of the targets in 2005-2008 was on average much lower than planned, explained partially by the lack of knowledge/data, experienced workers, and administrative flexibility. Surprisingly, the perceived importance of particular conservation measures, the investment priority accorded to them, the money available and various practical obstacles all failed to kg? explain the target levels achieved. However qualitative data from both the interviews and the survey highlight possible implementation obstacles: competing interests with other conservation actions and the level of engagement of particular implementing actors. Therefore we suggest that for successful implementation of recovery plans, there is aneed for initial and inclusive scoping prior to embarking on the plan, where not only issues like ecological knowledge and practical resources are considered, but also possible conflicts and synergies with other conservation actions. An adaptive approach with regular review of the conservation process is essential, particularly in the case of such complex action plans as the one for the WBW.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Long-term systematic population monitoring data sets are rare but are essential in identifying changes in species abundance. In contrast, community groups and natural history organizations have collected many species lists. These represent a large, untapped source of information on changes in abundance but are generally considered of little value. The major problem with using species lists to detect population changes is that the amount of effort used to obtain the list is often uncontrolled and usually unknown. It has been suggested that using the number of species on the list, the "list length," can be a measure of effort. This paper significantly extends the utility of Franklin's approach using Bayesian logistic regression. We demonstrate the value of List Length Analysis to model changes in species prevalence (i.e., the proportion of lists on which the species occurs) using bird lists collected by a local bird club over 40 years around Brisbane, southeast Queensland, Australia. We estimate the magnitude and certainty of change for 269 bird species and calculate the probabilities that there have been declines and increases of given magnitudes. List Length Analysis confirmed suspected species declines and increases. This method is an important complement to systematically designed intensive monitoring schemes and provides a means of utilizing data that may otherwise be deemed useless. The results of List Length Analysis can be used for targeting species of conservation concern for listing purposes or for more intensive monitoring. While Bayesian methods are not essential for List Length Analysis, they can offer more flexibility in interrogating the data and are able to provide a range of parameters that are easy to interpret and can facilitate conservation listing and prioritization. © 2010 by the Ecological Society of America.