990 resultados para Bacterial Fe cycling
Consecutive days of cold water immersion: effects on cycling performance and heart rate variability.
Resumo:
We investigated performance and heart rate (HR) variability (HRV) over consecutive days of cycling with post-exercise cold water immersion (CWI) or passive recovery (PAS). In a crossover design, 11 cyclists completed two separate 3-day training blocks (120 min cycling per day, 66 maximal sprints, 9 min time trialling [TT]), followed by 2 days of recovery-based training. The cyclists recovered from each training session by standing in cold water (10 °C) or at room temperature (27 °C) for 5 min. Mean power for sprints, total TT work and HR were assessed during each session. Resting vagal-HRV (natural logarithm of square-root of mean squared differences of successive R-R intervals; ln rMSSD) was assessed after exercise, after the recovery intervention, during sleep and upon waking. CWI allowed better maintenance of mean sprint power (between-trial difference [90 % confidence limits] +12.4 % [5.9; 18.9]), cadence (+2.0 % [0.6; 3.5]), and mean HR during exercise (+1.6 % [0.0; 3.2]) compared with PAS. ln rMSSD immediately following CWI was higher (+144 % [92; 211]) compared with PAS. There was no difference between the trials in TT performance (-0.2 % [-3.5; 3.0]) or waking ln rMSSD (-1.2 % [-5.9; 3.4]). CWI helps to maintain sprint performance during consecutive days of training, whereas its effects on vagal-HRV vary over time and depend on prior exercise intensity.
Resumo:
Analysis of the septic work-up of 194 neonates at Women's College Hospital, Toronto, showed that the only antepartum condition predicting neonatal sepsis was the mother being on antibiotics. The only postnatal condition predicting sepsis was a maternal postpartum white blood cell count over 11,000. The average cost for tests for a septic work-up in these 194 mother-neonate pairs was $71.48 (Canadian dollars), and the average cost of tests to find a septic case was $1,066.77.
Resumo:
Human follicular fluid, considered sterile, is aspirated as part of an in vitro fertilization (IVF) cycle. However, it is easily contaminated by the trans-vaginal collection route and little information exists in its potential to support the growth of microorganisms. The objectives of this study were to determine whether human follicular fluid can support bacterial growth over time, whether the steroid hormones estradiol and progesterone (present at high levels within follicular fluid) contribute to the in vitro growth of bacterial species, and whether species isolated from follicular fluid form biofilms. We found that bacteria in follicular fluid could persist for at least 28 weeks in vitro and that the steroid hormones stimulated the growth of some bacterial species, specifically Lactobacillus spp., Bifidobacterium spp. Streptococcus spp. and E. coli. Several species, Lactobacillus spp., Propionibacterium spp., and Streptococcus spp., formed biofilms when incubated in native follicular fluids in vitro (18/24, 75%). We conclude that bacteria aspirated along with follicular fluid during IVF cycles demonstrate a persistent pattern of growth. This discovery is important since it can offer a new avenue for investigation in infertile couples.
Resumo:
PURPOSE: Heat stress might attenuate the effects of carbohydrate on immunoendocrine responses to exercise by increasing endogenous glucose production and reducing the rate of exogenous carbohydrate oxidation. The authors compared the efficacy of carbohydrate consumption on immune responses to exercise in temperate vs. hot conditions. METHODS: Ten male cyclists exercised on 2 separate occasions in temperate (18.1 +/- 0.4 degrees C, 58% +/- 8% relative humidity) and on another 2 occasions in hot conditions (32.2 +/- 0.7 degrees C, 55% +/- 2% relative humidity). On each occasion, the cyclists exercised in a fed state for 90 min at approximately 60% VO2max and then completed a 16.1-km time trial. Every 15 min during the first 90 min of exercise, they consumed 0.24 g/kg body mass of a carbohydrate or placebo gel. RESULTS: Neutrophil counts increased during exercise in all trials (p < .05) and were significantly lower (40%, p = .006) after the carbohydrate than after the placebo trial in 32 degrees C. The concentrations of serum interleukin (IL)-6, IL-8, and IL-10 and plasma granulocyte-colony-stimulating factor, myeloperoxidase, and calprotectin also increased during exercise in all trials but did not differ significantly between the carbohydrate and placebo trials. Plasma norepinephrine concentration increased during exercise in all trials and was significantly higher (50%, p = .01) after the carbohydrate vs. the placebo trial in 32 degrees C. CONCLUSION: Carbohydrate ingestion attenuated neutrophil counts during exercise in hot conditions, whereas it had no effect on any other immune variables in either temperate or hot conditions.
Resumo:
Some minerals are colloidal and show no X-ray diffraction patterns. Vibrational spectroscopy offers one of the few methods for the determination of the structure of these minerals. Among this group of minerals is pitticite, simply described as (Fe, AsO4, SO4, H2O). In this work, the analogue of the mineral pitticite has been synthesised. The objective of this research is to determine the molecular structure of the mineral pitticite using vibrational spectroscopy. Raman and infrared bands are attributed to the AsO43−, SO42− and water stretching and bending vibrations. The Raman spectrum of the pitticite analogue shows intense peaks at 845 and 837 cm−1 assigned to the AsO43− stretching vibrations. Raman bands at 1096 and 1182 cm−1 are attributed to the SO42− antisymmetric stretching bands. Raman spectroscopy offers a useful method for the analysis of such colloidal minerals.
Resumo:
The catalytic performance of Fe–Ni/PG (PG: palygorskite) catalysts pre-calcined and reduced at 500 ◦C for catalytic decomposition of tar derived through rice hull gasification was investigated. The materials were characterized by using X-ray diffraction, hydrogen temperature reduction, and transmission electron microscopy. The results showed that ferrites with spinel structure ((Fe, Ni)3O4) were formed during preparation of bimetallic systems during calcination and reduction of the precursors (Fe–Ni/PG catalysts) and NiO metal oxide particles were formed over Fe6–Ni9/PG catalyst. The obtained experimental data showed that Fe–Ni/PG catalysts had greater catalytic activity than natural PG. Tar removal using Fe6–Ni9/PG catalyst was as high as Fe10–Ni6/PG catalyst (99.5%). Fe6–Ni9/PG showed greater catalytic activity with greater H2 yield and showed stronger resistance to carbon deposition, attributed to the presence of NiO nanoparticles. Thus, the addition of nickel and iron oxides played an important role in catalytic cracking of rice hull biomass tar.
Resumo:
In this study, the effect of catalyst preparation and additive precursors on the catalytic decomposition of biomass using palygorskite-supported Fe and Ni catalysts was investigated. The catalysts were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). It is concluded that the most active additive precursor was Fe(NO3)3·9H2O. As for the catalyst preparation method, co-precipitation had superiority over incipient wetness impregnation at low Fe loadings.
Resumo:
HtrA (High Temperature Requirement A) is a critical stress response protease and chaperone for many bacteria. HtrA is a multitasking protein which can degrade unfolded proteins, conduct specific proteolysis of some substrates for correct assembly, interact with substrates to ensure correct folding, assembly or localisation, and chaperone unfolded proteins. These functions are critical for the virulence of a number of bacterial pathogens, in some cases not simply due to the broad activities of HtrA in protection against the protein stress conditions which occur during virulence. But also due to the role of HtrA in either specific proteolysis or assembly of key protein substrates which function directly in virulence. Remarkably, these activities are all conducted without any requirement for ATP. The biochemical mechanism of HtrA relies both on the chymotryptic serine protease active site as well as the presence of two PDZ (protein binding) domains. The mechanism is a unique combination of activation by substrate motifs to alter the confirmation of the active site, and assembly into a multimeric complex which has enhanced degradation and may also act as a protective cage for proteins which are not degraded. The role of this protease in the pathogenesis of a number of bacteria and the details of its distinctive biochemical activation and assembly mechanisms are discussed in this chapter.
Resumo:
All levels of government continue to advocate increasing the number of people cycling for recreation and transport. However, governments and the general public still have concerns about the implications for the safety of cyclists and other road users. While there is concern about injury for bicycle-pedestrian collisions, for 2008-09 in Australia only 40 pedestrians were hospitalised as a result of a collision with a cyclist (and 33 cyclists from collisions with pedestrians). There is little research that observes changes over time in actual cyclist behaviours and interactions with other road users. This paper presents the results of an observational study of cycling in the Brisbane Central Business District based on data collected using the same methodology in October 2010 and 2012.
Resumo:
HtrA (High Temperature Requirement A) is a critical stress response protease and chaperone for many bacteria. HtrA is a multitasking protein which can degrade unfolded proteins, conduct specific proteolysis of some substrates for correct assembly, interact with substrates to ensure correct folding, assembly or localisation, and chaperone unfolded proteins. These functions are critical for the virulence of a number of bacterial pathogens, in some cases not simply due to the broad activities of HtrA in protection against the protein stress conditions which occur during virulence. But also due to the role of HtrA in either specific proteolysis or assembly of key protein substrates which function directly in virulence. Remarkably, these activities are all conducted without any requirement for ATP. The biochemical mechanism of HtrA relies both on the chymotryptic serine protease active site as well as the presence of two PDZ (protein binding) domains. The mechanism is a unique combination of activation by substrate motifs to alter the confirmation of the active site, and assembly into a multimeric complex which has enhanced degradation and may also act as a protective cage for proteins which are not degraded. The role of this protease in the pathogenesis of a number of bacteria and the details of its distinctive biochemical activation and assembly mechanisms are discussed in this chapter.
Resumo:
The objective of this work is to analyze ludlamite (Fe,Mn,Mg)3(PO4)2⋅4H2O from Boa Vista mine, Galiléia, Brazil and to assess the molecular structure of the mineral. The phosphate mineral ludlamite has been characterized by EMP-WDS, Raman and infrared spectroscopic measurements. The mineral is shown to be a ferrous phosphate with some minor substitution of Mg and Mn. Raman bands at 917 and 950 cm−1 are assigned to the symmetric stretching mode of and units. Raman bands at 548, 564, 599 and 634 cm−1 are assigned to the ν4 bending modes. Raman bands at 2605, 2730, 2896 and 3190 cm−1 and infrared bands at 2623, 2838, 3136 and 3185 cm−1 are attributed to water stretching vibrations. By using a Libowitzky empirical function, hydrogen bond distances are calculated from the OH stretching wavenumbers. Strong hydrogen bonds in the structure of ludlamite are observed as determined by their hydrogen bond distances. The application of infrared and Raman spectroscopy to the study of ludlamite enables the molecular structure of the pegmatite mineral ludlamite to be assessed.
Resumo:
Sedimentary palygorskite (SP) and hydrothermal palygorskite (HP) were characterized by XRF, TG/DSC, andXRD. The total iron and dissociative iron in palygorskite were detected using spectrophotometry. The results showed that about 3.57 wt% of Fe2O3 was detected in SP in contrast with 0.4 wt% in HP. SP was a Fe-substituted palygorskite, and HP was an Al-rich palygorskite. The occurrence of Fe substitution in SP resulted in two mass loss steps of coordinated water and resulted in a larger d spacing. The SP showed greater thermal stability than the HP. It was proposed the change of (200) diffraction peak and (240) diffraction peak reflect changes of tetrahedral and octahedral structures in palygorskite.
Resumo:
This research was done on hureaulite samples from the Cigana claim, a lithium bearing pegmatite with triphylite and spodumene. The mine is located in Conselheiro Pena, east of Minas Gerais. Chemical analysis was carried out by Electron Microprobe analysis and indicated a manganese rich phase with partial substitution of iron. The calculated chemical formula of the studied sample is: (Mn3.23, Fe1.04, Ca0.19, Mg0.13)(PO4)2.7(HPO4)2.6(OH)4.78. The Raman spectrum of hureaulite is dominated by an intense sharp band at 959 cm−1 assigned to PO stretching vibrations of HPO42− units. The Raman band at 989 cm−1 is assigned to the PO43− stretching vibration. Raman bands at 1007, 1024, 1047, and 1083 cm−1 are attributed to both the HOP and PO antisymmetric stretching vibrations of HPO42− and PO43− units. A set of Raman bands at 531, 543, 564 and 582 cm−1 are assigned to the ν4 bending modes of the HPO42− and PO43− units. Raman bands observed at 414, and 455 cm−1 are attributed to the ν2 HPO42− and PO43− units. The intense A series of Raman and infrared bands in the OH stretching region are assigned to water stretching vibrations. Based upon the position of these bands hydrogen bond distances are calculated. Hydrogen bond distances are short indicating very strong hydrogen bonding in the hureaulite structure. A combination of Raman and infrared spectroscopy enabled aspects of the molecular structure of the mineral hureaulite to be understood.
Resumo:
GPS is a commonly used and convenient technology for determining absolute position in outdoor environments, but its high power consumption leads to rapid battery depletion in mobile devices. An obvious solution is to duty cycle the GPS module, which prolongs the device lifetime at the cost of increased position uncertainty while the GPS is off. This article addresses the trade-off between energy consumption and localization performance in a mobile sensor network application. The focus is on augmenting GPS location with more energy-efficient location sensors to bound position estimate uncertainty while GPS is off. Empirical GPS and radio contact data from a large-scale animal tracking deployment is used to model node mobility, radio performance, and GPS. Because GPS takes a considerable, and variable, time after powering up before it delivers a good position measurement, we model the GPS behaviour through empirical measurements of two GPS modules. These models are then used to explore duty cycling strategies for maintaining position uncertainty within specified bounds. We then explore the benefits of using short-range radio contact logging alongside GPS as an energy-inexpensive means of lowering uncertainty while the GPS is off, and we propose strategies that use RSSI ranging and GPS back-offs to further reduce energy consumption. Results show that our combined strategies can cut node energy consumption by one third while still meeting application-specific positioning criteria.