244 resultados para Bacilli
Resumo:
Mycobacterium tuberculosis-specific cytolytic activity is mediated mostly by CD4+CTL in humans. CD4+CTL kill infected target cells by inducing Fas (APO-1/CD95)-mediated apoptosis. We have examined the effect of Fas ligand (FasL)-induced apoptosis of human macrophages infected in vitro with M. tuberculosis on the viability of the intracellular bacilli. Human macrophages expressed Fas and underwent apoptosis after incubation with soluble recombinant FasL. In macrophages infected either with an attenuated (H37Ra) or with a virulent (H37Rv) strain of M. tuberculosis, the apoptotic death of macrophages was associated with a substantial reduction in bacillary viability. TNF-induced apoptosis of infected macrophages was coupled with a similar reduction in mycobacterial viability, while the induction of nonapoptotic complement-induced cell death had no effect on bacterial viable counts. Infected macrophages also showed a reduced susceptibility to FasL-induced apoptosis correlating with a reduced level of Fas expression. These data suggest that apoptosis of infected macrophages induced through receptors of the TNF family could be an immune effector mechanism not only depriving mycobacteria from their growth environment but also reducing viable bacterial counts by an unknown mechanism. On the other hand, interference by M. tuberculosis with the FasL system might represent an escape mechanism of the bacteria attempting to evade the effect of apoptosis.
Resumo:
The presence of Mycobacterium bovis in bovine carcasses with lesions suggestive of tuberculosis was evaluated. Seventy-two carcass samples were selected during slaughter inspection procedures in abattoirs in the state of Mato Grosso do Sul, Brazil. Seventeen (23.6%) of samples showed colonies suggestive of mycobacteria that were confirmed to be acid-fast bacilli by Ziehl-Neelsen staining. Polymerase chain reaction (PCR) using primers specific for M. bovis identified M. bovis in 13 (76.5%) isolates. The PCR-restriction enzyme pattern analysis using gene encoding for the 65-kDa protein and two restriction enzymes identified the remaining four isolates that were represented by two M. tuberculosis complex and two nontuberculous mycobacteria. The results are indicative of infection of slaughter cattle by M. bovis and other mycobacteria in the state of Mato Grosso do Sul.
Resumo:
Over the past two decades, nosocomial infections caused by extended-spectrum beta-lactamase (ESBL)-producing Klebsiella spp. have become a major problem all around the world. This situation is of concern because there are limited antimicrobial options to treat patients infected with these pathogens, and also because this kind of resistance can spread to a wide variety of Gram-negative bacilli. Our objectives wereto evaluate among in-patients at a publicuniversity tertiary-care hospital with documented infection due to Klebsiella spp., which were the risk factors (cross-sectional analysis) and the clinical impact (prospective cohort) associated with an ESBL-producing strain. Study subjects were all patients admitted at the study hospital between April 2002 and October 2003, with a clinically and microbiologically confirmed infection caused by Klebsiella spp. at any body site, except infections restricted to the urinary tract. Of the 104 patients studied, 47 were infected with an ESBL-producing strain and 57 with a non-ESBL-producing strain. Independent risk factors associated with infection with an ESBL-producing strain were young age, exposure to mechanical ventilation, central venous catheter, use of any antimicrobial agent, and particularly use of a 4th generation cephalosporin or a quinolone. Length of stay was significant longer for patients infected with ESBL-producing strains than for those infected with non-ESBL-producing strains, although fatality rate was not significantly affected by ESBL-production in this cohort. In fact, mechanical ventilation and bacteremia were the only variables withindependent association withdeath detected in this investigation.
Resumo:
Among all infectious diseases that afflict humans, tuberculosis (TB) remains the deadliest. At present, epidemiologists estimate that one-third of the world population is infected with tubercle bacilli, which is responsible for 8 to 10 million new cases of TB and 3 million deaths annually throughout the world. Approximately 95% of new cases and 98% of deaths occur in developing nations, generally due to the few resources available to ensure proper treatment and where human immunodeficiency virus (HIV) infections are common. In 1882, Dr Robert Koch identified an acid-fast bacterium, Mycobacterium tuberculosis, as the causative agent of TB. Thirty-nine years later, BCG vaccine was introduced for human use, and became the most widely used prophylactic strategy to fight TB in the world. The discovery of the properties of first-line antimycobacterial drugs in the past century yielded effective chemotherapies, which considerably decreased TB mortality rates worldwide. The later introduction of some additional drugs to the arsenal used to treat TB seemed to provide an adequate number of effective antimicrobial agents. The modern, standard short-course therapy for TB recommended by the World Health Organization is based on a four-drug regimen that must be strictly followed to prevent drug resistance acquisition, and relies on direct observation of patient compliance to ensure effective treatment. Mycobacteria show a high degree of intrinsic resistance to most antibiotics and chemotherapeutic agents due to the low permeability of its cell wall. Nevertheless, the cell wall barrier alone cannot produce significant levels of drug resistance. M. tuberculosis mutants resistant to any single drug are naturally present in any large bacterial population, irrespective of exposure to drugs. The frequency of mutants resistant to rifampicin and isoniazid, the two principal antimycobacterial drugs currently in use, is relatively high and, therefore, the large extra-cellular population of actively metabolizing and rapidly growing tubercle bacilli in cavitary lesions will contain organisms which are resistant to a single drug. Consequently, monotherapy or improperly administered two-drug therapies will select for drug-resistant mutants that may lead to drug resistance in the entire bacterial population. Thereby, despite the availability of effective chemotherapy and the moderately protective vaccine, new anti-TB agents are urgently needed to decrease the global incidence of TB. The resumption of TB, mainly caused by the emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains and HIV epidemics, led to an increased need to understand the molecular mechanisms of drug action and drug resistance, which should provide significant insight into the development of newer compounds. The latter should be effective to combat both drug-susceptible and MDR/XDR-TB.
Resumo:
We evaluated the ability of a PCR assay to identify Mycobacterium tuberculosis complex (MTBC) from positive BACTEC® 12B broth cultures. A total of 107 sputum samples were processed and inoculated into Ogawa slants and BACTEC® 12B vials. At a growth index (GI) > 30, 1.0 ml of the 12B broth was removed, stored, and assayed with PCR. Molecular results were compared to those obtained by phenotypic identification methods, including the BACTEC® NAP method. The average times required to perform PCR and NAP were compared. Of the 107 broth cultures evaluated, 90 were NAP positive, while 91 were PCR positive for MTBC. Of particular interest were three contaminated BACTEC® 12B broth cultures yielding microorganisms other than acid-fast bacilli growth with a MTBC that were successfully identified by PCR, resulting in a mean time of 14 days to identify MTBC before NAP identification. These results suggest that PCR could be used as an alternative to the NAP test for the rapid identification of MTBC in BACTEC® 12B cultures, particularly in those that contained both MTBC and nontuberculous mycobacteria.
Resumo:
To evaluate commercial Lionex TB together with four antigens of Mycobacterium tuberculosis (MPT-64, MT10.3, 16 kDa and 38 kDa) for IgG and IgA cerebrospinal fluid (CSF) detection in the diagnosis of tuberculosis meningitis (TBM) with CSF negative acid-fast bacilli staining, 19 cases of TBM, 64 cases of other infectious meningoencephalitis and 73 cases of other neurological disorders were tested by enzyme linked immunosorbent assay. IgA-MPT-64 and IgG Lionex showed the highest sensitivities, specificities, positive predictive value and negative predictive value (63.2%, 47.4%; 95%, 93.7%; 40%, 98% and 28.4%, 97.1%, respectively). However, while grey zone was 12.7% and 6%, respectively, lowering sensitivity but maintains high specificity (> 95%). High protein concentration in CSF was associated with antibody positivity CSF/HIV+ which did not influence the sensitivity of both tests. To our knowledge, this is the first description of IgA-MPT-64 and IgG Lionex antibodies in CSF-TBM and, although there is good specificity, adjustments are needed based on antigen composition to enhance sensitivity.
Resumo:
Bacillary angiomatosis is a recently described infectious disease that usually affects immunosupressed hosts with a previous history of contact with cats. We report a rare case of bacillary angiomatosis in an immunocompetent 59-year-old woman with no history of previous exposure to cats, and atypical clinical features (fever and subcutaneous nodules with ulceration on the left ankle). Histopathology of the lesion showed extensive ulceration and reactive tumor-like vascular proliferation of the blood vessels with swollen endothelial cells and an inflammatory infiltrate including neutrophils and lymphocytes in the dermis and subcutis. Staining with the Warthin-Starry method demonstrated the presence of clustered bacilli located in the extracellular matrix adjacent to the proliferating endothelial cells. Diagnosis was confirmed with the detection of Bartonella spp. DNA in the affected skin and in bone marrow using polymerase chain reaction.
Resumo:
A cross-sectional analysis of stored Ziehl-Neelsen (ZN)-stained sputum smear slides (SSS) obtained from two public tuberculosis referral laboratories located in Juiz de Fora, Minas Gerais, was carried out to distinguish Mycobacterium bovis from other members of the Mycobacterium tuberculosis complex (MTC). A two-step approach was used to distinguish M. bovis from other members of MTC: (i) oxyR pseudogene amplification to detect MTC and, subsequently, (ii) allele-specific sequencing based on the polymorphism at position 285 of this gene. The oxyR pseudogene was successfully amplified in 100 of 177 (56.5%) SSS available from 99 individuals. No molecular profile of M. bovis was found. Multivariate analysis indicated that acid-fast bacilli (AFB) results and the source laboratory were associated (p < 0.05) with oxyR pseudogene amplification. SSS that were AFB++ SSS showed more oxyR pseudogene amplification than those with AFB0, possibly due to the amount of DNA. One of the two source laboratories presented a greater chance of oxyR pseudogene amplification, suggesting that differences in sputum conservation between laboratories could have influenced the preservation of DNA. This study provides evidence that stored ZN-SSS can be used for the molecular detection of MTC.
Resumo:
We applied MIRU-VNTR (mycobacterial interspersed repetitive-unit-variable-number tandem-repeat typing) to directly analyze the bacilli present in 61 stain-positive specimens from tuberculosis patients. A complete MIRU type (24 loci) was obtained for all but one (no amplification in one locus) of the specimens (98.4%), and the allelic values fully correlated with those obtained from the corresponding cultures. Our study is the first to demonstrate that real-time genotyping of Mycobacterium tuberculosis can be achieved, fully transforming the way in which molecular epidemiology techniques can be integrated into control programs.
Resumo:
Nerve biopsy examination is an important auxiliary procedure for diagnosing pure neural leprosy (PNL). When acid-fast bacilli (AFB) are not detected in the nerve sample, the value of other nonspecific histological alterations should be considered along with pertinent clinical, electroneuromyographical and laboratory data (the detection of Mycobacterium leprae DNA with polymerase chain reaction and the detection of serum anti-phenolic glycolipid 1 antibodies) to support a possible or probable PNL diagnosis. Three hundred forty nerve samples [144 from PNL patients and 196 from patients with non-leprosy peripheral neuropathies (NLN)] were examined. Both AFB-negative and AFB-positive PNL samples had more frequent histopathological alterations (epithelioid granulomas, mononuclear infiltrates, fibrosis, perineurial and subperineurial oedema and decreased numbers of myelinated fibres) than the NLN group. Multivariate analysis revealed that independently, mononuclear infiltrate and perineurial fibrosis were more common in the PNL group and were able to correctly classify AFB-negative PNL samples. These results indicate that even in the absence of AFB, these histopathological nerve alterations may justify a PNL diagnosis when observed in conjunction with pertinent clinical, epidemiological and laboratory data.
Resumo:
Leprosy transmission still occurs despite the availability of highly effective treatment. The next step towards successfully eliminating leprosy is interrupting the chain of transmission of the aetiological agent, Mycobacterium leprae. In this investigation, we provide evidence that household contacts (HHCs) of leprosy patients might not only have subclinical infections, but may also be actively involved in bacilli transmission. We studied 444 patients and 1,352 contacts using anti-phenolic glycolipid-I (PGL-I) serology and quantitative polymerase chain reaction (qPCR) to test for M. leprae DNA in nasal swabs. We classified the patients according to the clinical form of their disease and the contacts according to the characteristics of their index case. Overall, 63.3% and 34.2% of patients tested positive by ELISA and PCR, respectively. For HHCs, 13.3% had a positive ELISA test result and 4.7% had a positive PCR test result. The presence of circulating anti-PGL-I among healthy contacts (with or without a positive PCR test result from nasal swabs) was considered to indicate a subclinical infection. DNA detected in nasal swabs also indicates the presence of bacilli at the site of transmission and bacterial entrance. We suggest that the concomitant use of both assays may allow us to detect subclinical infection in HHCs and to identify possible bacilli carriers who may transmit and disseminate disease in endemic regions. Chemoprophylaxis of these contacts is suggested.
Resumo:
When grown in the presence of exogenous collagen I, Mycobacterium bovis BCG was shown to form clumps. Scanning electron microscopy examination of these clumps revealed the presence of collagen fibres cross-linking the bacilli. Since collagen is a major constituent of the eukaryotic extracellular matrices, we assayed BCG cytoadherence in the presence of exogenous collagen I. Collagen increased the interaction of the bacilli with A549 type II pneumocytes or U937 macrophages, suggesting that BCG is able to recruit collagen to facilitate its attachment to host cells. Using an affinity chromatography approach, we have isolated a BCG collagen-binding protein corresponding to the previously described mycobacterial laminin-binding histone-like protein (LBP/Hlp), a highly conserved protein associated with the mycobacterial cell wall. Moreover, Mycobacterium leprae LBP/Hlp, a well-characterized adhesin, was also able to bind collagen I. Finally, using recombinant fragments of M. leprae LBP/Hlp, we mapped the collagen-binding activity within the C-terminal domain of the adhesin. Since this protein was already shown to be involved in the recognition of laminin and heparan sulphate-containing proteoglycans, the present observations reinforce the adhesive activities of LBP/Hlp, which can be therefore considered as a multifaceted mycobacterial adhesin, playing an important role in both leprosy and tuberculosis pathogenesis.
Resumo:
Stenotrophomonas maltophilia is a multidrug-resistant nosocomial pathogen that is difficult to identify unequivocally using current methods. Accordingly, because the presence of this microorganism in a patient may directly determine the antimicrobial treatment, conventional polymerase chain reaction (PCR) and real-time PCR assays targeting 23S rRNA were developed for the specific identification of S. maltophilia. The PCR protocol showed high specificity when tested against other species of Stenotrophomonas, non-fermentative Gram-negative bacilli and 100 clinical isolates of S. maltophilia previously identified using the Vitek system.
Resumo:
Leprosy remains prevalent in Brazil. ErbB2 is a receptor for leprosy bacilli entering Schwann cells, which mediates Mycobacterium leprae-induced demyelination and the ERBB2 gene lies within a leprosy susceptibility locus on chromosome 17q11-q21. To determine whether polymorphisms at the ERBB2 locus contribute to this linkage peak, three haplotype tagging single nucleotide polymorphisms (tag-SNPs) (rs2517956, rs2952156, rs1058808) were genotyped in 72 families (208 cases; 372 individuals) from the state of Pará (PA). All three tag-SNPs were associated with leprosy per se [best SNP rs2517959 odds ratio (OR) = 2.22; 95% confidence interval (CI) 1.37-3.59; p = 0.001]. Lepromatous (LL) (OR = 3.25; 95% CI 1.37-7.70; p = 0.007) and tuberculoid (TT) (OR = 1.79; 95% CI 1.04-3.05; p = 0.034) leprosy both contributed to the association, which is consistent with the previous linkage to chromosome 17q11-q21 in the population from PA and supports the functional role of ErbB2 in disease pathogenesis. To attempt to replicate these findings, six SNPs (rs2517955, rs2517956, rs1810132, rs2952156, rs1801200, rs1058808) were genotyped in a population-based sample of 570 leprosy cases and 370 controls from the state of Rio Grande do Norte (RN) and the results were analysed using logistic regression analysis. However, none of the associations were replicated in the RN sample, whether analysed for leprosy per se, LL leprosy, TT leprosy, erythema nodosum leprosum or reversal reaction conditions. The role of polymorphisms at ERBB2 in controlling susceptibility to leprosy in Brazil therefore remains unclear.
Resumo:
Drug-resistant tuberculosis (TB) is a growing global threat. Approximately 450,000 people developed multidrug-resistant TB worldwide in 2012 and an estimated 170,000 people died from the disease. This paper describes the sociodemographic, clinical-epidemiological and bacteriological aspects of TB and correlates these features with the distribution of anti-TB drug resistance. Mycobacterium tuberculosis (MT) cultures and drug susceptibility testing were performed according to the BACTEC MGIT 960 method. The results demonstrated that MT strains from individuals who received treatment for TB and people who were infected with human immunodeficiency virus were more resistant to TB drugs compared to other individuals (p < 0.05). Approximately half of the individuals received supervised treatment, but most drug-resistant cases were positive for pulmonary TB and exhibited positive acid-fast bacilli smears, which are complicating factors for TB control programs. Primary healthcare is the ideal level for early disease detection, but tertiary healthcare is the most common entry point for patients into the system. These factors require special attention from healthcare managers and professionals to effectively control and monitor the spread of TB drug-resistant cases.