934 resultados para BLOCK-COPOLYMER MELTS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple overview of the methods used and the expected benefits of block copolymers in organic photovoltaic devices is given in this review. The description of the photovoltaic process makes it clear how the detailed self-assembly properties of block copolymers can be exploited. Organic photovoltaic technology, an inexpensive, clean and renewable energy source, is an extremely promising option for replacing fossil fuels. It is expected to deliver printable devices processed on flexible substrates using high-volume techniques. Such devices, however, currently lack the long-term stability and efficiency to allow organic photovoltaics to surpass current technologies. Block copolymers are envisaged to help overcome these obstacles because of their long term structural stability and their solid-state morphology being of the appropriate dimensions to efficiently perform charge collection and transfer to electrodes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrospinng of a fibrous triblock copolymer consisting of poly(methyl methacrylate-block-poly[2-(diethylamino) ethyl methacrylate]-block-poly(methyl methacrylate) (PMMA-b-PDEA-b-PMMA) has been discussed. A mixed co-solvent system of tetrahydrofuran (THF) and dimethylformamide (DMF) was used to electrospin fibrous PMMA-b-PDEA-b-PMMA and its influence on surface morphology and diameter of the electrospun fiber was also investigated in an attempt to control the fiber diameter. The concentration range between 20 and 40 wt % was found suitable for electrospinning of PMMA-b-PDEA-b-PMMA in a THF/DMF system. It was also observed that the average fiber diameter decreased as the content of DMF was increased. A significant decrease in fiber diameter was observed when moving from a THF solution to a THF/DMF system at a ratio of 70:30.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microwave annealing is an emerging technique for achieving ordered patterns of block copolymer films on substrates. Little is understood about the mechanisms of microphase separation during the microwave annealing process and how it promotes the microphase separation of the blocks. Here, we use controlled power microwave irradiation in the presence of tetrahydrofuran (THF) solvent, to achieve lateral microphase separation in high- lamellar-forming poly(styrene-b-lactic acid) PS-b-PLA. A highly ordered line pattern was formed within seconds on silicon, germanium and silicon on insulator (SOI) substrates. In-situ temperature measurement of the silicon substrate coupled to condition changes during "solvo-microwave" annealing allowed understanding of the processes to be attained. Our results suggest that the substrate has little effect on the ordering process and is essentially microwave transparent but rather, it is direct heating of the polar THF molecules that causes microphase separation. It is postulated that the rapid interaction of THF with microwaves and the resultant temperature increase to 55 degrees C within seconds causes an increase of the vapor pressure of the solvent from 19.8 to 70 kPa. This enriched vapor environment increases the plasticity of both PS and PLA chains and leads to the fast self-assembly kinetics. Comparing the patterns formed on silicon, germanium and silicon on insulator (SOI) and also an in situ temperature measurement of silicon in the oven confirms the significance of the solvent over the role of substrate heating during "solvo-microwave" annealing. Besides the short annealing time which has technological importance, the coherence length is on a micron scale and dewetting is not observed after annealing. The etched pattern (PLA was removed by an Ar/O-2 reactive ion etch) was transferred to the underlying silicon substrate fabricating sub-20 nm silicon nanowires over large areas demonstrating that the morphology is consistent both across and through the film.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The microphase separation of block copolymer (BCP) thin films can afford a simple and cost-effective means to studying nanopattern surfaces, and especially the fabrication of nanocircuitry. However, because of complex interface effects and other complications, their 3D morphology, which is often critical for application, can be more complex than first thought. Here, we describe how emerging microscopic methods may be used to study complex BCP patterns and reveal their rich detail. These methods include helium ion microscopy (HIM) and high resolution x-section transmission electron microscopy (XTEM), and complement conventional secondary electron and atomic force microscopies (SEM and TEM). These techniques reveal that these structures are quite different to what might be expected. We illustrate the advances in the understanding of BCP thin film morphology in several systems, which result from this characterization. The systems described include symmetric, lamellar forming polystyrene-b-polymethylmethacrylate (PS-b-PMMA), cylinder forming polystyrene-b-polydimethylsiloxane (PS-b-PDMS), as well as lamellar and cylinder forming patterns of polystyrene-b-polyethylene oxide (PS-b-PEO) and polystyrene-b-poly-4-vinylpyridine (PS-b-P4VP). Each of these systems exhibits more complex arrangements than might be first thought. Finding and developing techniques whereby complex morphologies, particularly at very small dimensions, can be determined is critical to the practical use of these materials in many applications. The importance of quantifying these complex morphologies has implications for their use in integrated circuit manufacture, where they are being explored as alternative pattern forming methods to conventional UV lithography.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nanometer range structure produced by thin films of diblock copolymers makes them a great of interest as templates for the microelectronics industry. We investigated the effect of annealing solvents and/or mixture of the solvents in case of symmetric Poly (styrene-block-4vinylpyridine) (PS-b-P4VP) diblock copolymer to get the desired line patterns. In this paper, we used different molecular weights PS-b-P4VP to demonstrate the scalability of such high χ BCP system which requires precise fine-tuning of interfacial energies achieved by surface treatment and that improves the wetting property, ordering, and minimizes defect densities. Bare Silicon Substrates were also modified with polystyrene brush and ethylene glycol self-assembled monolayer in a simple quick reproducible way. Also, a novel and simple in situ hard mask technique was used to generate sub-7nm Iron oxide nanowires with a high aspect ratio on Silicon substrate, which can be used to develop silicon nanowires post pattern transfer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cloud-point temperatures (T-cl's) of both binary poly(ethylene oxide) (PEO)-poly(ethylene oxide-b-dimethylsiloxane) [P(EO-b-DMS)] and ternary[toluene/PEO/P(EO-b-DMS)] systems were determined by light scattering measurements at atmospheric pressure. The phase separation behavior upon cooling in the ternary system has been investigated at atmospheric pressure and under high pressure and compared to the phase behavior in the binary system. The phase transition temperatures have been obtained for all of the samples. As a result, the pressure induces compatibility in the binary mixtures, but for the ternary system, pressure not only can induce mixing but also can induce phase separation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A relative approach, based on the dynamic density functional theory, for simulating the solvent evaporation rate dependence of self-assembly process of block copolymers in solution is proposed. The di- and triblock copolymers are first chosen as the candidates for exploration of novel microstructures. The results reveal that asymmetrical block copolymers with unequal block length, which generally exhibit disordered microdomain patterns in melts, have the ability to assemble into periodic ordered microdomain patterns by properly controlling solvent evaporation rate, e.g., diblock copolymers may assemble into lamellar microstructures with lamellar thickness proportional to individual block length. This simulation suggests a strategy of design and manufacture of polymeric nanomaterials with novel microstructures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A diblcok copolymer monomethoxy poly (ethylene glycol)-block-poly(L-lactide-co-2-methyl-2-carboxyl-propylene carbonate) (MPEG-b-P(LA-co-MCC)) was obtained by copolymerization of L-lactide (LA) and 2-methyl-2-benzoxycarbonyl-propylene carbonate (MBC) and subsequent catalytic hydrogenation. The pendant carboxyl groups of the copolymer MPEG-b-P(LA-co-MCC) were conjugated with antitumor drug docetaxel and tripeptide arginine-glycine-aspartic acid (RGD), respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of binary SB blend samples with various overall volume fraction of PS (Phi(PS)) and different discrete distribution of the block length (denoted as d(PS) or d(PB)) were prepared by mixing various asymmetric poly(styrene)-block-poly(butadiene) (SB) block copolymers with a symmetric SB block copolymer. The influences of the external solvent field, composition, and the block length distribution on the morphologies of the blends in the thin films were investigated by atomic force microscopy (AFM) and transmission electron microscopy (TEM). The experimental results revealed that after solvent annealing, the interface of the blend thin films depended mainly on the cooperative effects of the annealing solvent and the inherently interfacial curvature of the blends. Upon exposure to the saturated vapor of cyclohexane, which has preferential affinity for the PB block, a "threshold" of Phi(PS) (approximate 0.635-0.707) was found. Below such threshold, the influence of the annealing solvent played an important role on the interfacial curvature of the blend thin film.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystallization behavior of crystalline-crystalline diblock copolymer containing poly(ethylene oxide) (PEO) and poly(epsilon-caprolactone) (PCL), in which the weight fraction of PCL is 0.815, has been studied via differential scanning calorimeter (DSC), wide-angle X-ray diffraction (WAXD), and polarized optical microscopy (POM). DSC and WAXD indicated that both PEO and PCL blocks crystallize in the block copolymer. POM revealed a ring-banded spherulite morphology or the PEO-b-PCL diblock copolymer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-assembly thin films of symmetric triblock copolymer after annealing and quenching were examined by an effective Monte Carlo simulation method. The defects in the ordered lamellae of the thin films after quenching, which were dependent on the initialization of copolymer melts, are removed in the thin films after annealing. The mean-square gyration radius and end-to-end distance of copolymer chains in the thin films after annealing are smaller than those in the thin films after quenching because of the complete relaxation of polymer during annealing. We also find that the density of A block in the region near to the surface is higher than that in the interior of the thin films. As a result, it is different from the thin films of symmetric A(n)B(n) diblock copolymer, in which surface ordering forms before the interior, that ordering phenomena occurs first in the interior region in the thin films of symmetric A(n)B(m)A(n). triblocl copolymer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By using a combinatorial screening method based on the self-consistent field theory, we investigate the equilibrium morphologies of linear ABCBA and H-shaped (AB)(2)C(BA)(2) block copolymers in two dimensions. The triangle phase diagrams of both block copolymers are constructed by systematically varying the volume fractions of blocks A, B, and C. In this study, the interaction energies between species A, B, and C are set to be equal. Four different equilibrium morphologies are identified, i.e., the lamellar phase (LAM), the hexagonal lattice phase (HEX), the core-shell hexagonal lattice phase (CSH), and the two interpenetrating tetragonal lattice phase (TET2). For the linear ABCBA block copolymer, the reflection symmetry is observed in the phase diagram except for some special grid points, and most of grid points are occupied by LAM morphology. However, for the H-shaped (AB)(2)C(BA)(2) block copolymer, most of the grid points in the triangle phase diagram are occupied by CSH morphology, which is ascribed to the different chain architectures of the two block copolymers. These results may help in the design of block copolymers with different microstructures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By using a combinatorial screening method based on the self-consistent field theory (SCFT) for polymers, we have investigated the morphology of H-shaped ABC block copolymers (A(2)BC(2)) and compared them with those of the linear ABC block copolymers. By changing the ratios of the volume fractions of two A arms and two C arms, one can obtain block copolymers with different architectures ranging from linear block copolymer to H-shaped block copolymer. By systematically varying the volume fractions of block A, B, and C, the triangle phase diagrams of the H-shaped ABC block copolymer with equal interactions among the three species are constructed. In this study, we find four different morphologies ( lamellar phase ( LAM), hexagonal lattice phase ( HEX), core-shell hexagonal lattice phase (CSH), and two interpenetrating tetragonal lattice (TET2)). Furthermore, the order-order transitions driven by architectural change are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report observation of inverted phases consisting of spheres and/or cylinders of the majority fraction block in a poly(styrene-b-butadiene-b-styrene) (SBS) triblock copolymer by solvent-induced order-disorder phase transition (ODT). The SBS sample has a molecular weight of 140K Da and a polystyrene (PS) weight fraction of 30%. Tapping mode atomic force microscopy (AFM) and transmission electron microscopy (TEM) were utilized to study the copolymer microstructure of a set of solution-cast SBS films dried with different solvent evaporation rates, R. The control with different R leads to kinetic frozen-in of microstructures corresponding to a different combination parameter chi (eff)Z of the drying films (where chi (eff) is the effective interaction parameter of the polymer solution in the cast film and Z the number of "blobs" of size equal to the correlation length one block copolymer chain contains), for which faster evaporation rates result in microstructures of smaller chi (eff)Z. As R was decreased from rapid evaporations (similar to0.1 mL/h), the microstructure evolved from a totally disordered one sequentially to inverted phases consisting of spheres and then cylinders of polybutadiene (PB) in a PS matrix and finally reached the equilibrium phase, namely cylinders of PS in a PB matrix. We interpret the formation of inverted phases as due to the increased relative importance of entropy as chi (eff)Z is decreased, which may dominate the energy penalty for having a bigger interfacial area between the immiscible blocks in the inverted phases.