911 resultados para Average chain length
Resumo:
Sphagnum moss is the dominant plant type in modern boreal and (sub)arctic ombrotrophic bogs and is of particular interest due to its sensitivity to climate and its important role in wetland biogeochemistry. Here we reconstruct the occurrence of Sphagnum moss - and associated biogeochemical change - within a thermally immature, early Paleogene (~55 Ma) lignite from Schöningen, NW Germany using a high-resolution, multi-proxy approach. Changes in the abundance of Sphagnum-type spores and the C23/C31n-alkane ratio indicate the expansion of Sphagnum moss within the top of the lignite seam. This Sphagnum moss expansion is associated with the development of waterlogged conditions, analogous to what has been observed within modern ombrotrophic bogs. The similarity between biomarkers and palynology also indicates that the C23/C31n-alkane ratio may be a reliable chemotaxonomic indicator for Sphagnum during the early Paleogene. The d13C value of bacterial hopanes and mid-chain n-alkanes indicates that a rise in water table is not associated with a substantial increase in aerobic methanotrophy. The absence of very low d13C values within the top of the seam could reflect either less methanogenesis or less efficient methane oxidation under waterlogged sulphate-rich conditions.
Resumo:
The concentrations, distributions, and stable carbon isotopes (d13C) of plant waxes carried by fluvial suspended sediments contain valuable information about terrestrial ecosystem characteristics. To properly interpret past changes recorded in sedimentary archives it is crucial to understand the sources and variability of exported plant waxes in modern systems on seasonal to inter-annual timescales. To determine such variability, we present concentrations and d13C compositions of three compound classes (n-alkanes, n-alcohols, n-alkanoic acids) in a 34-month time series of suspended sediments from the outflow of the Congo River. We show that exported plant-dominated n-alkanes (C25-C35) represent a mixture of C3 and C4 end members, each with distinct molecular distributions, as evidenced by an 8.1 ± 0.7 per mil (±1Sigma standard deviation) spread in d13C values across chain-lengths, and weak correlations between individual homologue concentrations (r = 0.52-0.94). In contrast, plant-dominated n-alcohols (C26-C36) and n-alkanoic acids (C26-C36) exhibit stronger positive correlations (r = 0.70-0.99) between homologue concentrations and depleted d13C values (individual homologues average <= -31.3 per mil and -30.8 per mil, respectively), with lower d13C variability across chain-lengths (2.6 ± 0.6 per mil and 2.0 ± 1.1 per mil, respectively). All individual plant-wax lipids show little temporal d13C variability throughout the time-series (1 Sigma <= 0.9 per mil), indicating that their stable carbon isotopes are not a sensitive tracer for temporal changes in plant-wax source in the Congo basin on seasonal to inter-annual timescales. Carbon-normalized concentrations and relative abundances of n-alcohols (19-58% of total plant-wax lipids) and n-alkanoic acids (26-76%) respond rapidly to seasonal changes in runoff, indicating that they are mostly derived from a recently entrained local source. In contrast, a lack of correlation with discharge and low, stable relative abundances (5-16%) indicate that n-alkanes better represent a catchment-integrated signal with minimal response to discharge seasonality. Comparison to published data on other large watersheds indicates that this phenomenon is not limited to the Congo River, and that analysis of multiple plant-wax lipid classes and chain lengths can be used to better resolve local vs. distal ecosystem structure in river catchments.
Resumo:
In this study we reconstruct sea surface temperatures (SSTs) using two lipid-based biomarker proxies (alkenone unsaturation index UK'37 and TEX86 index based on glycerol dibiphytanyl glycerol tetraethers) in 36 surface sediment samples from the Indonesian continental margin off west Sumatra and south of Java and the Lesser Sunda Islands. Comparison of measured temperatures (World Ocean Atlas 09) to reconstructed temperatures suggests that SST-UK'37 reflects the SE monsoon SST in the upwelling area south of Java and the Lesser Sunda Islands, whereas Temp-TEXH86 estimates are up to 2°C lower than SST-UK'37. This offset is possibly related to either one or a combination of two factors: i) the depth habitats of the source organisms; ii) different seasonal production and/ or seasonality of export associated with phytoplankton blooming triggered by primary productivity. In the non-upwelling area off west Sumatra, the alkenone-based SSTs are cooler than measured temperatures during the entire year, likely due to the reduced sensitivity of the UK'37 proxy beyond 28°C. However, reconstructed temperatures based on TEXH86 are consistent with mean annual SST, implying that the Temp-TEXH86 reflects the mean annual SST in the non-upwelling area of the tropical Eastern Indian Ocean.
Resumo:
Analysis of the molecular composition of the organic matter (OM) from whole sediment samples can avoid analytical bias that might result from isolation of components from the sediment matrix, but has its own analytical challenges. We evaluated the use of GC * GC-ToFMS to analyze the pyrolysis products of six whole sediment samples obtained from above, within and below a 1 million year old OM-rich Mediterranean sapropel layer. We found differences in pyrolysis products
Resumo:
Transfer of organic carbon (OC) from the terrestrial to the oceanic carbon pool is largely driven by riverine and aeolian transport. Before transport, however, terrigenous organic matter can be retained in intermediate terrestrial reservoirs such as soils. Using compound-specific radiocarbon analysis of terrigenous biomarkers their average terrestrial residence time can be evaluated. Here we show compound-specific radiocarbon (14C) ages of terrigenous biomarkers and bulk 14C ages accompanied by geochemical proxy data from core top samples collected along transects in front of several river mouths in the Black Sea. 14C ages of long chain n-alkanes, long chain n-fatty acids and total organic carbon (TOC) are highest in front of the river mouths, correlating well with BIT (branched and isoprenoid tetraether) indices, which indicates contribution of pre-aged, soil-derived terrigenous organic matter. The radiocarbon ages decrease further offshore towards locations where organic matter is dominated by marine production and aeolian input potentially contributes terrigenous organic matter. Average terrestrial residence times of vascular plant biomarkers deduced from n-C29+31 alkanes and n-C28+30 fatty acids ages from stations directly in front of the river mouths range from 900 ± 70 years to 4400 ± 170 years. These average residence times correlate with size and topography in climatically similar catchments, whereas the climatic regime appears to control continental carbon turnover times in morphologically similar drainage areas of the Black Sea catchment. Along-transect data imply petrogenic contribution of n-C29+31 alkanes and input via different terrigenous biomarker transport modes, i.e., riverine and aeolian, resulting in aged biomarkers at offshore core locations. Because n-C29+31 alkanes show contributions from petrogenic sources, n-C28+30 fatty acids likely provide better estimates of average terrestrial residence times of vascular plant biomarkers. Moreover, sedimentary n-C28 and n-C30 fatty acids appear clearly much less influenced by autochthonous sources than n-C24 and n-C26 fatty acids as indicated by increasing radiocarbon ages with increasing chain-length and are, thus, more representative as vascular plant biomarkers.
Resumo:
A series of molecular organic markers were determined in surface sediments from the Gulf of Genoa (Ligurian Sea) in order to evaluate their potential for palaeo-environmental reconstructions. Allochthonous input can be characterized by the distributions of n-C29 and n-C31 alkanes, n-C26 and n-C28 alkanols and branched glycerol dialkyl glycerol tetraethers (GDGTs), whose concentrations are generally highest near the river mouths. In the open basin however, terrestrial n-alkanes and n-alkanols may have an additional, aeolian source. Autochthonous input is represented by crenarchaeol and isoprenoid GDGTs. Their concentrations are highest in the open basin showing the preference of Thaumarchaeota for oligotrophic waters. Indications of a significant degradation of sterols and C37 alkenones exclude these lipids as reliable productivity proxies. Using terrestrial and aquatic lipids as end-members allows estimating the percentage of terrestrial organic matter between 20% and 58% in the coastal area decreasing to 1 to 30% in the deep basin. The spatial distribution of sea surface temperature (SST) estimates using the alkenone-based UK'37 index is very similar to the autumnal (November) mean satellite-based SST distribution. Conversely, TEXH86-derived SST estimates are close to winter SSTs in the coastal area and summer SSTs in the open basin. This pattern reflects presumably a shift in the main production of Thaumarchaeota from the coastal area in winter to the open basin in summer. This study represents a major prerequisite for the future application of lipid biomarkers on sediment cores from the Gulf of Genoa.
Resumo:
Southwestern Africa's coastal marine mudbelt, a prominent Holocene sediment package, provides a valuable archive for reconstructing terrestrial palaeoclimates on the adjacent continent. While the origin of terrestrial inorganic material has been intensively studied, the sources of terrigenous organic material deposited in the mudbelt are yet unclear. In this study, plant wax derived n-alkanes and their compound-specific d13C in soils, flood deposits and suspension loads from regional fluvial systems and marine sediments are analysed to characterize the origin of terrestrial organic material in the southwest African mudbelt. Soils from different biomes in the catchments of the Orange River and small west coast rivers show on average distinct n-alkane distributions and compound-specific d13C values reflecting biome-specific vegetation types, most notably the winter rainfall associated Fynbos Biome of the southwestern Cape. In the fluvial sediment samples from the Orange River, changes in the n-alkane distributions and compound-specific d13C compositions reveal an overprint by local vegetation along the river's course. The smaller west coast rivers show distinct signals, reflecting their small catchment areas and particular vegetation communities. Marine surface sediments spanning a transect from the northern mudbelt (29°S) to St. Helena Bay (33°S) reveal subtle, but spatially coherent, changes in n-alkane distributions and compound-specific d13C, indicating the influence of Orange River sediments in the northern mudbelt, the increasing importance of terrigenous input from the adjacent western coastal biomes in the central mudbelt, and contributions from the Fynbos Biome to the southern mudbelt. These findings indicate the different sources of terrestrial organic material deposited in the mudbelt, and highlight the potential the mudbelt has to preserve evidence of environmental change from the adjacent continent.
Resumo:
Atmospheric dust samples collected along a transect off the West African coast have been investigated for their lipid content and compound-specific stable carbon isotope compositions. The saturated hydrocarbon fractions of the organic solvent extracts consist mainly of long-chain n-alkanes derived from epicuticular wax coatings of terrestrial plants. Backward trajectories for each sampling day and location were calculated using a global atmospheric circulation model. The main atmospheric transport took place in the low-level trade-wind layer, except in the southern region, where long-range transport in the mid-troposphere occurred. Changes in the chain length distributions of the n-alkane homologous series are probably related to aridity, rather than temperature or vegetation type. The carbon preference of the leaf-wax n-alkanes shows significant variation, attributed to a variable contribution of fossil fuel- or marine-derived lipids. The effect of this nonwax contribution on the d13C values of the two dominant n-alkanes in the aerosols, n-C29 and n-C31 alkane, is, however, insignificant. Their d13C values were translated into a percentage of C4 vs. C3 plant type contribution, using a two-component mixing equation with isotopic end-member values from the literature. The data indicate that only regions with a predominant C4 type vegetation, i.e. the Sahara, the Sahel, and Gabon, supply C4 plant-derived lipids to dust organic matter. The stable carbon isotopic compositions of leaf-wax lipids in aerosols mainly reflect the modern vegetation type along their transport pathway. Wind abrasion of wax particles from leaf surfaces, enhanced by a sandblasting effect, is most probably the dominant process of terrigenous lipid contribution to aerosols.
Resumo:
In this work, crystallization and melting behavior of metallocene ethylene/alpha-olefin copolymers were investigated by differential scanning calorimetry (DSC) and atomic force microscopy (AFM). The results indicated that the crystallization and melting temperatures for all the samples were directly related to the long ethylene sequences instead of the average sequence length (ASL), whereas the crystallization enthalpy and crystallinity were directly related to ASL, that is, both parameters decreased with a decreasing ASL. Multiple melting peaks were analyzed by thermal analysis. Three phenomena contributed to the multiple melting behaviors after isothermal crystallization, that is, the melting of crystals formed during quenching, the melting-recrystallization process, and the coexistence of different crystal morphologies. Two types of crystal morphologies could coexist in samples having a high comonomer content after isothermal crystallization. They were the chain-folded lamellae formed by long ethylene sequences and the bundlelike crystals formed by short ethylene sequences. The coexistence phenomenon was further proved by the AFM morphological observation.
Resumo:
Using a scanning tunnelling microscope or mechanically controllable break junction it has been shown that it is possible to control the formation of a wire made of single gold atoms. In these experiments an interatomic distance between atoms in the chain of ∼3.6 Å was reported which is not consistent with recent theoretical calculations. Here, using precise calibration procedures for both techniques, we measure the length of the atomic chains. Based on the distance between the peaks observed in the chain length histogram we find the mean value of the interatomic distance before chain rupture to be 2.5±0.2 Å. This value agrees with the theoretical calculations for the bond length. The discrepancy with the previous experimental measurements was due to the presence of He gas, that was used to promote the thermal contact, and which affects the value of the work function that is commonly used to calibrate distances in scanning tunnelling microscopy and mechanically controllable break junctions at low temperatures.
Resumo:
Objective.To estimate the excess length of stay in an intensive care unit (ICU) due to a central line–associated bloodstream infection (CLABSI), using a multistate model that accounts for the timing of infection. Design.A cohort of 3,560 patients followed up for 36,806 days in ICUs. Setting.Eleven ICUs in 3 Latin American countries: Argentina, Brazil, and Mexico. Patients.All patients admitted to the ICU during a defined time period with a central line in place for more than 24 hours. Results.The average excess length of stay due to a CLABSI increased in 10 of 11 ICUs and varied from −1.23 days to 4.69 days. A reduction in length of stay in Mexico was probably caused by an increased risk of death due to CLABSI, leading to shorter times to death. Adjusting for patient age and Average Severity of Illness Score tended to increase the estimated excess length of stays due to CLABSI. Conclusions.CLABSIs are associated with an excess length of ICU stay. The average excess length of stay varies between ICUs, most likely because of the case‐mix of admissions and differences in the ways that hospitals deal with infections.
Resumo:
To date, biodegradable networks and particularly their kinetic chain lengths have been characterized by analysis of their degradation products in solution. We characterize the network itself by NMR analysis in the solvent-swollen state under magic angle spinning conditions. The networks were prepared by photoinitiated cross-linking of poly(dl-lactide)−dimethacrylate macromers (5 kg/mol) in the presence of an unreactive diluent. Using diffusion filtering and 2D correlation spectroscopy techniques, all network components are identified. By quantification of network-bound photoinitiator fragments, an average kinetic chain length of 9 ± 2 methacrylate units is determined. The PDLLA macromer solution was also used with a dye to prepare computer-designed structures by stereolithography. For these networks structures, the average kinetic chain length is 24 ± 4 methacrylate units. In all cases the calculated molecular weights of the polymethacrylate chains after degradation are maximally 8.8 kg/mol, which is far below the threshold for renal clearance. Upon incubation in phosphate buffered saline at 37 °C, the networks show a similar mass loss profile in time as linear high-molecular-weight PDLLA (HMW PDLLA). The mechanical properties are preserved longer for the PDLLA networks than for HMW PDLLA. The initial tensile strength of 47 ± 2 MPa does not decrease significantly for the first 15 weeks, while HMW PDLLA lost 85 ± 5% of its strength within 5 weeks. The physical properties, kinetic chain length, and degradation profile of these photo-cross-linked PDLLA networks make them most suited materials for orthopedic applications and use in (bone) tissue engineering.